
XStandard Developer's Guide: Table Of Contents
This guide is intended for use with XStandard version 2.0. Please refer to Changes From Previous Version for notes on
the differences between this guide and the previous version.

• Requirements

• Interface

• Features

• Architecture

• Installation

• API Reference

• Web Integration
o Step 1
o Step 2
o Step 3
o Step 4
o Step 5
o Examples
o Integration FAQs

• App Integration
o Visual Studio
o Access
o Visual Basic 6
o Visual C++ 6
o Delphi 7
o Visual FoxPro 9

• Accessibility

• Localization

• Web Services
o Spell Checker
o Image Library & Attachment Library
o Directory
o Subdocument

• Toolbar Customization
o Styles
o Buttons

• Best Practices

• Advanced Topics
o Caching
o Heartbeat
o Placeholders
o Browser Preview Customization
o Screen Reader Preview Customization
o Namespaces
o Locking
o Markers

• License File

• Did You Know?

• Changes From Previous Version

• Copyright

Requirements
• Client Requirements

• Server Requirements

• Current Release

Client Requirements
For browser-based applications

http://xstandard.com/en/documentation/xstandard-dev-guide/changes/
http://xstandard.com/en/documentation/xstandard-dev-guide/requirements/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/
http://xstandard.com/en/documentation/xstandard-dev-guide/features/
http://xstandard.com/en/documentation/xstandard-dev-guide/architecture/
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/
http://xstandard.com/en/documentation/xstandard-dev-guide/api/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step1/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step2/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step3/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step4/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step5/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/examples/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/faqs/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vs-net/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/access2000/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vb6/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vc6/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/delphi7/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vfp9/
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/
http://xstandard.com/en/documentation/xstandard-dev-guide/localization/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/
http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/
http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/styles/
http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/buttons/
http://xstandard.com/en/documentation/xstandard-dev-guide/best-practices/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/caching/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/heartbeat/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/placeholders/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/preview/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/screenreader/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/namespaces/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/locking/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/markers/
http://xstandard.com/en/documentation/xstandard-dev-guide/license-file/
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/
http://xstandard.com/en/documentation/xstandard-dev-guide/changes/
http://xstandard.com/en/documentation/xstandard-dev-guide/copyright/
http://xstandard.com/en/documentation/xstandard-dev-guide/requirements/#client
http://xstandard.com/en/documentation/xstandard-dev-guide/requirements/#server
http://xstandard.com/en/documentation/xstandard-dev-guide/requirements/#current-release

IE 5+, Firefox 1.0+, Safari 1.3+, Opera 9.0+
For desktop applications

Visual Studio, Access, VB 6, VC++, Visual FoxPro, Delphi
Operating Systems

Windows 2000, XP, Vista, Windows 7 or Windows 8

Server Requirements
When used in Web applications, XStandard can work with any server-side scripting environment such as ASP,
ASP.NET, PHP, ColdFusion, JSP, etc. XStandard Pro comes with server-side software called Web Services for file
uploading, building image libraries and spell checking. Currently, this software is available for ASP and ASP.NET on
Windows and PHP on Windows/Linux/FreeBSD.

Current Release
Version

3.0
Download Packages

• x-lite.exe (1.9 MB) XStandard Lite for Windows

• x-pro.exe (2.0 MB) XStandard Pro for Windows

Download XStandard

Interface
• Toolbar

o Edit Mode
o View Source Mode
o Browser Preview Mode
o Screen Reader Preview Mode

• Context Menu

Toolbar
The editor's toolbar is the primary means of accessing the editor's functionality. The screen shot below shows XStandard
with the drop-down Styles menu extended on the toolbar.

http://xstandard.com/en/downloads/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/#toolbar
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/#wysiwyg
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/#source
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/#preview
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/#screen-reader
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/#context-menu

XStandard's toolbar is flexible and highly customizable. Buttons can be shown, hidden or re-arranged. Existing icons can
be modified or new buttons added. See the Toolbar Customization section of this document for instructions. If necessary,
XStandard's toolbar can also be hidden entirely and replaced by a different toolbar that communicates with the editor
through its API.
The editor has 4 modes of operation (Edit, View Source, Browser Preview and Screen Reader Preview). Different toolbar
buttons are available on the toolbar in each mode, as described in the following sections.

Edit Mode

 The Drop-down Styles Menu

Toolbar Function Description

Styles menu - Business users format content by selecting from a drop-

down menu of style options. The Styles Menu list is customizable and
styling options typically reflect the type of document being edited. This
greatly simplifies the authoring process and ensures consistency of
presentation.
User-friendly names in the Styles menu carry instructions for the type of
element and attribute(s) to be created. In our example, selecting "Bold"
creates a tag. Selecting "Underline" creates a span tag with a

class called "underline": .

Styles appearing in the Styles Menu are defined in an XML document that
the editor reads when it is started. More information is available under
the Styles section.

 Default Toolbar Buttons In Edit Mode

Toolbar
Function

ID Description

 ordered-list Numbered list - This button creates an ordered list of sequentially numbered items.

 unordered-list Bulleted list - This button creates an unordered list of bulleted items.

 definition-list Definition list - This button creates a definition list which can be used to author a

glossary of terms, to present dialog, or other associated content.

 draw-layout-
table

Draw layout table - This button is used to graphically specify the dimensions of a

layout table.

 draw-data-
table

Draw data table - This button is used to graphically specify the dimensions of a data

table.

 image Image - This button is used to insert images. Users can enter a specific URL where the

image can be found, browse a library of images, or select an image from their local
computer.

 images-as-
text

Show images as text - This button displays alternate text in place of images so that

alternate text can be seen and edited in the document.

 separator Separator - This button inserts a content separator. By default, this renders as a line.

 hyperlink Hyperlink - This button is used to insert or edit hyperlinks (or anchors). The button is

active only when text or an image is selected.

 attachment Attachment - This button is available in the Pro version of XStandard, and is used to

browse attachment libraries.The button is active only when text or an image is selected.

 directory Directory - This button is available in XStandard Pro. It is used to browse third-party

sytems such as a CMS and inserts code snippets into the editor.

 spellchecker Spelling - This button spell-checks the contents of the editor and is available in

XStandard Pro.

 wysiwyg Edit - Changes the editor's view to Edit (WYSIWYG) mode.

http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/
http://xstandard.com/en/documentation/xstandard-dev-guide/api/
http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/styles/

 Default Toolbar Buttons In Edit Mode

Toolbar
Function

ID Description

 source View source - This button displays the XHTML source code of content managed by the

editor.

 preview Browser preview - This presents the editor's content as IE would display it.

 screen-reader Screen reader preview - This displays content managed through the editor as a

screen reader would process it, in linear fashion. This feature gives authors opportunities
to review and optimize content for greater accessibility.

 help Help - Opens a new window containing end-user documentation for the editor.

 Additional Toolbar Buttons In Edit Mode

Toolbar
Function

ID Description

 strong Bold

 em Italic

 cut Cut

 copy Copy

 paste Paste

 sub Subscript

 sup Superscript

 underline Underline - By default, this button creates the markup: .

This markup can be customized.

 strikethrough Strikethrough - By default, this button creates the markup: <span

class="strikethrough">. This markup can be customized.

 undo Undo

 redo Redo

 blockquote Add long quotation- This button identifies content as a quotation. By default, the text is

formatted as a block, and justified to left and right.

 undo-
blockquote

Remove long quotation - This removes a long quotation.

 align-left Align left- By default, this button creates the markup: <p class="left">. This markup

can be customized.

 align-center Align center- By default, this button creates the markup: <p class="center">. This

markup can be customized.

 align-right Align right- By default, this button creates the markup: <p class="right">. This

markup can be customized.

 textbox Text box - By default, this button creates the markup: <div

class="textbox"><h5>{heading}</h5><p>{text}</p></div>. This markup can be

customized.

 photo Photo - By default, this button creates the markup: <div class="photo"><p

class="photo"><img width="100" alt="" height="150"

src="images/placeholder.gif" /></p><p

class="photo">{caption/credit}</p></div>. This markup can be customized.

 Additional Toolbar Buttons In Edit Mode

Toolbar
Function

ID Description

 open-
document

Open document - This button provides a hook for custom programming by generating an

event.

 save Save document - This button provides a hook for custom programming by generating an

event.

 new-
document

New document - This button provides a hook for custom programming by generating an

event.

 print Print - This button provides a hook for custom programming by generating an event.

 properties Properties - This button provides a hook for custom programming by generating an event.

 wizard Wizard - This button provides a hook for custom programming by generating an event.

 layout-table Create layout table - This creates a table used for visual layout rather than for

presenting data. Layout tables are typically used to arrange images and text to achieve a
more pleasing visual effect.

 data-table Create data table - This button creates a table used for presenting tabular data. An

example would be a bus schedule or an expense report. Data tables typically have row and/or
column headings and the data inside the table is read and understood in relation to the
headings.

 copyright Copyright symbol

 euro Euro symbol

 pound Pound symbol

 registered-
trade-mark

Registered trade mark symbol

 trade-mark Trade mark symbol

 yen Yen symbol

 expand Expand - This button is used to open the editor in a larger window. Currently, this

functionality is only available in the Windows version of the editor.

 find-replace Find / replace

View Source Mode

 Default Toolbar Buttons In View Source Mode

Toolbar
Function

ID Description

 indent Indent - This button inserts a TAB character.

 whitespace Show whitespace - This button toggles the show whitespace feature on/off. When

enabled, the editor will render a marker in place of whitespace characters such as soft
spaces and tabs.

 word-wrap Word wrap - This button toggles the word wrap feature on/off.

 dim-tags Dim tags - This button toggles the dim tags feature on/off. When enabled, the editor will

dim or gray out markup characters in order to make it easier to read content.

 validate Validate - This button is used to check if the markup is well formed according to the rules

of XML.

 wysiwyg Edit - Changes the editor's view to Edit (WYSIWYG) mode.

 Default Toolbar Buttons In View Source Mode

Toolbar
Function

ID Description

 source View source - This button displays the XHTML source code of content managed by the

editor.

 preview Browser preview - This presents the editor's content as IE would display it.

 screen-
reader

Screen reader preview - This displays content managed through the editor as a screen

reader would process it, in linear fashion. This feature gives authors opportunities to review
and optimize content for greater accessibility.

Browser Preview Mode

 Default Toolbar Buttons In Browser Preview Mode

Toolbar
Function

ID Description

 wysiwyg Edit - Changes the editor's view to Edit (WYSIWYG) mode.

 source View source - This button displays the XHTML source code of content managed by the

editor.

 preview Browser preview - This presents the editor's content as IE would display it.

 screen-
reader

Screen reader preview - This displays content managed through the editor as a screen

reader would process it, in linear fashion. This feature gives authors opportunities to review
and optimize content for greater accessibility.

Screen Reader Preview Mode

 Default Toolbar Buttons In Screen Reader Preview Mode

Toolbar
Function

ID Description

 wysiwyg Edit - Changes the editor's view to Edit (WYSIWYG) mode.

 source View source - This button displays the XHTML source code of content managed by the

editor.

 preview Browser preview - This presents the editor's content as IE would display it.

 screen-
reader

Screen reader preview - This displays content managed through the editor as a screen

reader would process it, in linear fashion. This feature gives authors opportunities to review
and optimize content for greater accessibility.

Context Menu
XStandard's interface provides context-sensitive pop-up menus, or "context menus". These menus are accessed by right
mouse clicks, by SHIFT+F10 on Windows or CTRL+SPACE on OS X.

The functionality of the toolbar is fully accessible using a keyboard, through the context menu:

The context sensitive context menus provide access to a lot of functionality . The screen shot below shows table editing
features available via the context menu.

Features
XStandard: Powerful features. Steered by standards.
This table lists the principal features of XStandard Lite and XStandard Pro, with explanatory screen shots. Hyperlinks lead
to additional information. Please contact us if you have any questions.

XStandard Features

Feature Lite Pro See
It

Notes

Runs in browser-based content management solutions

Internet Explorer, Firefox,
Safari and Opera.

Runs in desktop-based content management solutions

Use XStandard wherever
ActiveX controls are
supported (Visual Basic,

http://xstandard.com/en/contact-us/
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-runs-in-browser.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-runs-in-desktop-apps.gif

XStandard Features

Feature Lite Pro See
It

Notes

Visual C++, Access, Visual
Studio.NET, Delphi, FoxPro,
etc.). See App Integration in
this documentation for more
details.

Author/edit/spell check alternate text directly in the document The "Images As Text" feature
reduces the skill required to
author appropriate alternate
text, intuitively clarifies the
function of alternate text, and
exposes alternate text for the
first time to processing by
popular editing features such
as find/replace and spell
checking.

Generates clean XHTML

Why XHTML is best for
content management systems
(CMS).

Supports most CSS2.1 selectors Supported CSS 2.1 selectors

A genuine XHTMLeditor, not an HTMLeditor with code clean-up routines.

Most WYSIWYG editors are
just JavaScript wrappers
around the editing control built
into many browsers such as
the MSHTML control found in
Internet Explorer. These types
of editor (which
generate HTML and then run
code clean-up routines
against it) have significant
limitations. By contrast,
XStandard is built from the
ground up to be a
true XHTML editor in its own
right.

XHTML generated by XStandard can be parsed by XMLparsers. Use off-the-
self XML technologies
like DOM, SAX and XSLT to
further process markp
generated by XStandard.
Your CMS can do this before
content is saved to the
database, or in a batch
process. See an example of
how to load content generated
by XStandard into an XML
DOM parser.

Uses Cascading Style Sheets (CSS) for formatting.

XStandard uses external or
embedded CSS to ensure
data is never fused with
formatting. See how to
correctly format content.

Makes applying CSSquick and easy

Applying the correct
formatting is fast and
accurate using XStandard's

http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/
http://xstandard.com/en/articles/xhtml-best-for-cms
http://xstandard.com/en/articles/xhtml-best-for-cms
http://xstandard.com/en/articles/xhtml-best-for-cms
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-css-selectors-note
http://xstandard.com/en/support/parse-xhtml-using-xml-parser/
http://xstandard.com/en/support/parse-xhtml-using-xml-parser/
http://xstandard.com/en/support/parse-xhtml-using-xml-parser/
http://xstandard.com/en/support/parse-xhtml-using-xml-parser/
http://xstandard.com/en/support/format-content/
http://xstandard.com/en/support/format-content/
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-styles-quick-easy-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-styles-quick-easy-note
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-xhtml.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-genuine-xhtml-editor.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-css.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-styles-quick-easy.gif

XStandard Features

Feature Lite Pro See
It

Notes

drop-down "Styles" menu that
generates the markup that
references CSS. User-friendly
style names speed the
authoring process.

Uses Web Services not FTP for file uploading

Web Services are superior
to FTP because they handle
metadata and offer tighter
integration with content
management systems.

Easy-to-use interface

XStandard's streamlined
toolbar is a refreshing
alternative to the dizzy array
of toolbar buttons/controls
seen in most WYSIWYG
editors. XStandard is able to
offer more functionality with a
tighter toolbar because
advanced functionality is
available through the context
menu and the Styles drop-
down menu. Also, since
content in XStandard is
formatted through CSS, some
toolbar buttons/controls used
by other editors are
completely unecessary.

Configurable toolbar

Show / hide / move the
buttons on XStandard's
toolbar.

Customizable toolbar

Change icons to match the
look-and-feel of your own
applications. Move frequently
used styles to the toolbar.
Program buttons to insert
code snippets, or use your
own buttons to extend
XStandard's functionality.

Available in 22 languages

Language versions include:
English, French, German,
Spanish, Chinese, Dutch,
Italian, Russian and Czech.

Create new language versions easily.

Since XStandard stores its
localization data in an
independent XML file,
XStandard's 22 standard
interface languages can be
easily modified (reworded), or
entirely new language
versions of XStandard can be
created.

Manages content in any language

Author content in multiple
languages (including Chinese,
Russian, Greek, etc.).

http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-file-uploading-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-customizable-toolbar-note
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-file-uploading.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-interface.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-configurable-toolbar.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-customizable-toolbar.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-localization.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-easy-localization.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-multilingual-content.gif

XStandard Features

Feature Lite Pro See
It

Notes

XStandard is a true Unicode
editor.

Imports third-party data

XStandard's timesaving
"Directory" feature
communicates with third-party
applications (such as
your CMS) and allows users
to insert data from external
sources directly into the
editor.

Cleans Microsoft Word

XStandard retains structural
elements when pasting from
Word (lists, tables, hyperlinks,
images, headings, etc.), but
strips out proprietary Microsoft
Office tags and inline
formatting.

Has a multi-lingual spell checker and custom dictionary

Spell check in English (US,
Canadian, British), German,
Danish, Spanish, French,
Italian, Dutch, Norwegian,
Portuguese and Swedish. Add
unusual spellings or frequently
used abbreviations to a
custom dictionary.

Enables locking of content (read-only)

Ability to add markers to content

Markers are text labels that
can apply short, informative
messages to elements of
content. For example, they
can be used to flag areas of
editable or read-only content.

Supports subdocuments

Subdocuments are chunks of
reusable content that authors
insert into documents as
required. Subdocuments are
essentially custom elements
that act as placeholders for
content stored outside the
document, within the CMS.

Supports popular table editing options.

Editing options include
splitting / merging cells,
aligning cell contents (right /
left / center / top / middle /
bottom), inserting / deleting
rows, columns and tables, etc.

Ability to draw tables by dragging

Supports bullets and numbered lists

Supports authoring definition lists

XStandard is one of the few
editors that support authoring
of definition lists. XStandard

http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-directory.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-word-cleaning.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-spell.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-locking.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-markers.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-subdocument.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-table-options.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-draw-table.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-lists.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-definition-lists.gif

XStandard Features

Feature Lite Pro See
It

Notes

also has unique features that
make authoring defintion lists
easier, including the ability to
sort items in the list.

Supports the correct use of block quotes

Most editors
use <blockquote> for

indenting which is wrong.
XStandard encourages the
correct use
of <blockquote> for

quotations only, and
uses CSS for indenting.

Supports inline quotes XStandard is one of the few
editors that support
the <q> element.

Easily creates links within the current document

XStandard automatically
treats document sections
(headings h1 to h6) as

anchor points and provides an
interface to create hyperlinks
to these anchors.

Use relative URLs for images

XStandard can be configured
to resolve relative URLs in
markup so that images with
relative URLs can be
displayed to users.

Cursor stays in sync when switching between Edit and View Source
modes

Saves images from the editor to the desktop

Supports drag & drop of image files directly into the editor, as well as file
browsing

 Drag images from the desktop
into the editor. Images will be
uploaded to the server.
Browse image files on the
local computer or in remote
libraries. Set limits on file size
and type.

Permits entire folders to be dragged directly into the editor

Uploaded folders are
automatically zipped and a
hyperlink created to the
zipped file.

Inserts custom tags

XStandard makes it easy for
business users to add
semantic meaning to text and
objects by inserting custom
tags.

Automatically inserts image metadata

Metadata attached to image
files in libraries browsed by
XStandard is automatically
captured when images are
selected.

http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-custom-tags-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-custom-tags-note
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-blockquote.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/bookmarks.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-image-url.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-save-to-computer.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-drag-and-drop-folder.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-custom-tags.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-metadata.gif

XStandard Features

Feature Lite Pro See
It

Notes

Supports semantic markup tags
like <abbr>, <acronym>, <dfn>, <kbd>, <samp>, <code>, <cite>,

etc.

Inserts semantic tags that
render markup meaningful to
visual and non-visual
browsers.

Meets or exceeds regional accessibility standards for code output

The editor's standards-
compliant markup meets or
exceeds accessibility
requirements: Section 508
(USA), CLF (Canada), etc.

Distinguishes between data and layout tables

Maintains the important
distinction between data and
layout tables, which are
processed differently by
assistive technologies such as
screen readers.

Distinguishes between decorative and informative images

XStandard makes it easy to
ensure that informative
images are used in
a semantically
meaningful way.

Offers a rich API for extending the editor's functionality

Extend the functionality of
XStandard through custom
programming to meet the
unique needs of your content
management system. Hook
into XStandard events to
launch your own dialog boxes
and to programmatically insert
markup into the editor.

Includes a unique "Screen Reader Preview"

The accessibility button on
XStandard's toolbar opens
the Screen Reader
Preview that helps authors
further optimize content for
accessibility.

Collapsible/expandable editor window via toolbar button

Collapsing the editor permits a
more economic use of screen
real estate, while permitting
authors to expand the editor
when in use. The editor can
be expanded to a full-screen
view, or customized to snap
open to any size.

Notes
Supports most CSS 2.1 selectors

Universal selector
Matches the name of any element. For example:
* {margin:0;padding:0}

Type selector
Matches the name of a given element. For example:
h1 {color:red}

Descendant selector
Matches an element that is the descendant of another element. For example:
h1 em {color:red}

http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-semantic-markup-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-tables-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-tables-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-decorative-informative-image-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-decorative-informative-image-note
http://xstandard.com/en/documentation/xstandard-dev-guide/api/
http://xstandard.com/en/documentation/xstandard-dev-guide/api/
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-screen-reader-note
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-screen-reader-note
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-semantic-markup.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-semantic-markup.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-tables.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-decorative-informative-image.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-api.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-screen-reader.gif
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/feature-expand.gif
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-css-selectors

Child selector
Matches an element that is the direct child of another element. For example:
p > q > strong {color:red}

Adjacent sibling selector
Matches an element, given an element that immediately precedes it. For example:
h1 + p {margin-left:40px}

Attribute selector
Matches elements that have certain attributes. For example:
a[title] {color:red}

Class selector
Matches elements given a class value. For example:
em.important {color:red}

ID selector
Matches an element with a given ID. For example:
#chapter1 {color:red}

XStandard makes applying the correct CSS quick and easy
Authors apply CSS by choosing formatting options from the editor's drop-down Styles menu. Each style in the menu
generates markup that references an appropriate CSS. Since developers can attribute friendly, meaningful names to each
style (for examle, "Chapter Heading" or "Sale Price"), authors find it easy to recognize and apply the right formatting to the
right content. Styles in the menu can also be grouped together for greater convenience, and the choice of styles will
typically reflect the type of document being edited. For authors, these features make applying CSS an intuitive and
comfortable experience that results in high levels of compliance with presentation standards.

The advantages of using Web Services

1. Web Services can be easily customized to meet the unique needs of different content management systems,
whereas FTP lacks the programmatic hooks necessary for processes that require tighter integration. For example,
requiring uploaded files to be stored directory in a database, pushed through a workflow process, or modified in
some way before being saved to the server.

2. Today's applications also require more metadata than FTP is able to provide. For example, when uploading a file,
Web Services can also supply the CMS with information such as the name of the document the file is associated
with, the Session ID, which user uploaded the file, etc.

3. Some corporate networks also do not permit FTP, so Web Services that run over HTTP are an ideal solution.

A configurable and customizable toolbar
Both versions of XStandard permit toolbar icons to be hidden, displayed or moved to different positions on the editor's
toolbar. XStandard Pro also has a customizable toolbar that allows developers to change the appearance of toolbar icons
to match the look-and-feel of applications XStandard runs in, or to move frequently used styles off the drop-down Styles
menu and onto the toolbar. Buttons can also be programmed to insert code snippets into the editor, or to extend the
editor's functionality in other ways.

Imports third-party data
XStandard's "Directory" service is a timesaving feature that communicates with third-party applications, such as CMS. It
allows users to import external data from those applications directly into the editor. Content imported in this way might
include staff listings, product numbers and descriptions, or indeed any type of centrally stored information in any structure
(tables, email addresses, etc.)

Supports drag & drop of images directly into the editor, and file browsing
Images can be dragged directly into XStandard from the desktop. Restrictions can be set on file size or type, and the
dimensions of uploaded images are automatically calculated. XStandard ensures that images are used correctly by
requiring images to be identified as "decorative" or "informative", and requiring alt text for the latter.

Inserts custom tags that add semantic meaning to text and objects
Custom tags allow business users to attach semantic meaning to elements of content during the authoring process.
Custom tags can subsequently be used for indexing data, or for optimizing search results in enterprise-level search
engines. They can also serve as placeholders for dynamic content. In the example below, a custom tag acts as a
placeholder for the latest stock price:

1. The current stock price is $<stock exchange="NASDAQ">INTL</stock>.

At run time this gives the result:

1. The current stock price is $31.49.

Supports the distinction between data and layout tables
Data tables such as the one below contain data that can only understood in relation to cell and column headers. If the
association between the table cells and the headers is not made clear, non-visual browsers will read the data in linear

http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-styles-quick-easy
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-file-uploading
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-customizable-toolbar
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-directory
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-drag-drop
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-custom-tags
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-tables

fashion. The result will be meaningless and sound like this. By contrast, XStandard makes it easy to create tables that
use <th> to identify the column and row headers that cell contents refer to. XStandard also requires authors to submit

summaries for data tables, allowing non-visual browsers to describe tables fully. Listen to how a screen reader might
process the same data table properly marked up using XStandard.

Cups of coffee consumed by each person

Name Cups Type Sugar

Wendy 10 Regular yes

Jim 15 Decaf no

Distinguishes between decorative and informative images
XStandard ensures that images are used correctly by prompting authors to identify images as decorative or informative,
when images are uploaded through the editor or referenced in a remote library.
Decorative images are used for visual effect or as design elements (spacers or graphical bullets). Since they are not used
to convey meaningful information, XStandard makes decorative images invisible to non-visual browsers by giving them an
empty alt text, and by not requiring a title or longdesc.

By contrast, informative images such as photographs, diagrams and navigational aids do convey important meaning.
XStandard therefore requires alt text for informative images and encourages users to also contribute both

a title and longdesc. In addition, XStandard reinforces the distinction between alt text and titleby asking for

both. (title is properly used for tool tips, not alt)

Includes a unique "Screen Reader Preview"
Markup generated by XStandard is guaranteed to be accessibility-ready, but XStandard's Screen Reader Preview offers
authors an additional opportunity to optimize content for accessibility. It does this by displaying content managed through
XStandard as it is "read" by screen readers. This means content is laid out in linear fashion, together with information that
the author would normally not see (alternate text, table summaries, tool tips, etc.). Previewing content in this fashion
prompts authors to make necessary changes prior to publishing.
The Screen Reader Preview also issues alert messages when code entered manually through View Source contains
semantically questionable markup. For example it discourages the use of the tag, which has visual significance for

sighted readers but carries no semantic significance for users of assistive technologies such as screen readers. In this
case users would be encouraged to use which does have semantic meaning for screen readers. Other alert

messages include warnings that alt text or table summaries are missing. This information must be submitted before
content can be saved.

Architecture
XStandard is written in C++ with a Firefox/Safari/Opera plug-in API and an ActiveX wrapper for IE. It runs natively in IE
5+, Firefox 1+, Safari 1.3+, Opera 9+ and many desktop development environments such as Visual Basic, Visual C++,
Delphi, FoxPro, Access, Visual Studio.NET, etc.

Separating Content From Presentation
XStandard generates clean, accessible, standards-compliant markup that separates content from presentation. To do this,
XStandard avoids deprecated constructs like the element and the style attribute that are typically created by

font-selectors and color-pickers. Instead, as seen in the screen shot below, XStandard uses its Styles menu to create

http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/table-bad-markup.mp3
http://xstandard.com/D375C7CD-52DE-4DA1-B777-5A8373CCA4AD/table-clean-markup.mp3
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-decorative-informative-image
http://xstandard.com/en/documentation/xstandard-dev-guide/features/#feature-screen-reader

markup that is then formatted by CSS. The Styles menu (which uses convenient friendly names) makes applying the right
formatting to the right content easy, and helps developers maintain presentation standards.

Styles And CSS
Styles are instructions for creating markup. CSS formatting rules are applied to markup in order to create the desired
presentation style.

Behind each user-friendly Style name are instructions for creating markup. For example, the style "Title" may create
markup that looks like this <h1 class="title">Breaking News</h1>. CSS can then be used to format this

markup. For example, h1.title {color: red}. The screen shot below illustrates this approach.

Styles are customizable and can be given any user-friendly name and can be instructed to create any element (with any
number of attributes). CSS are easy to write and are a standards-compliant way of formatting Web content.

Web Services
Web Services are applications that run on the server and communicate with other computers using a dialect
of XML called SOAP (Simple Object Access Protocol). Typically, business users do not interact directly with Web
Services. Instead, they interact with user-friendly programs which themselves communicate with Web Services.
XStandard uses Web Services to upload files from local computers to the server, to build image, attachment and code

http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/styles/
http://xstandard.com/en/articles/css-reference/

snippet libraries, for spell checking and for communicating with third-party applications (such as your CMS). See the Web
Services section for more information.

Installation
• Windows

o Install
o Uninstall

• OS X 10.9 and earlier
o Install
o Uninstall

Windows
Install
Download the installation program (x-lite.exe or x-pro.exe) and double-click on it to begin installing XStandard. The install
wizard will guide you through the install process.

To test-drive XStandard, from the Start menu select "All Programs > XStandard > Test-drive Online" as shown in the
screen shot below.

Uninstall
To uninstall XStandard, from the Start menu select "All Programs > XStandard > Uninstall".

OS X 10.9 and earlier
Install
Download the installation program (x-lite.dmg or x-pro.dmg) and double click on it to begin installing XStandard. OS X will
mount a drive called "XStandard Lite" or "XStandard Pro" and open it as shown in the screen shot below.

http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/#windows
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/#windows-install
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/#windows-uninstall
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/#osx
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/#osx-install
http://xstandard.com/en/documentation/xstandard-dev-guide/installation/#osx-uninstall

Double click on "Install XStandard Lite.pkg" or Install XStandard Pro.pkg" and an install wizard will guide you through the
install process. After the install, you can unmount the drive by dragging it to the Trash bin.

To test-drive XStandard, go to /Applications/XStandard/test-drive.htm

Uninstall
To uninstall XStandard, delete the following:

• /Applications/XStandard

• /Library/Internet Plug-Ins/XStandard.plugin

API Reference
XStandard is added to a Web page using an <object> tag. Inside the <object> tag, the type attribute is used to

identify the type of plug-in to display, while <param> tags are used to customize the editor's functionality. For example:

<object type="application/x-xstandard" id="editor1" width="100%" height="400">

<param name="Value" value="Hello World!" />

</object>

Below is a list of properties (<param> tag names), methods, events and their descriptions.

• Basic Settings

• Web Services Settings

• Customization Settings

• Authoring Techniques Settings

• Integration Settings

• Hooks & Extensions Settings

• Network Setttings

• Miscellaneous Settings

Basic Settings
Property Value
XHTML data that the user (business author) has entered.

Property CSS
Absolute URL or file path to a CSS file or CSS data. If absent, a built-in CSS file will be used. This file
contains CSS formatting rules and can be the same CSS file used on your Web site.

Property Styles
Absolute URL or file path to an XML styles file or XML data as a string. If absent, a built-in styles file will be used. This file
is used to populate the drop-down Styles Menu. Each style contains instructions for generating markup.

Property Base
URL used to resolve relative URLs for images defined in markup.

Property License
Absolute URL or file path to a license file or license data as a string. If absent, the editor will run under the XStandard Lite
freeware license.

Web Services Settings
Property SpellCheckerURL
(Available in XStandard Pro)
Absolute URL to a Spell Web Service. For testing purposes, the following URL is
available: http://soap.xstandard.com/spellchecker.aspx

Property SpellCheckerLangFilter

http://xstandard.com/en/documentation/xstandard-dev-guide/api/#basic
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#web-services
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#customization
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#authoring-techniques
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#integration
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#hooks-extensions
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#network
http://xstandard.com/en/documentation/xstandard-dev-guide/api/#misc

(Available in XStandard Pro)
A comma-delimited list of dictionaries that are a sub-set of the dictionaries available for the Spell Web Service. In other
words, if the Web Service supports 10 dictionaries but you want XStandard to use only 2, you would specify the two
dictionaries in this parameter. For example: en-ca, fr

Property SpellCheckerLang
(Available in XStandard Pro)
A language code to indicate a default dictionary language for spell checking. The default dictionary must be defined in the
spellchecker.config file for the SpellChecker Web Service. Example: en-us

Property DirectoryURL
(Available in XStandard Pro)
Absolute URL to a Directory Web Service. Multiple URLs can be specified, separated by a space character. For testing
purposes, the following URL is available: http://soap.xstandard.com/directory.aspx

Property ImageLibraryURL
(Available in XStandard Pro)
Absolute URL to an Image Library Web Service. Multiple URLs can be specified, separated by a space character. For
testing purposes, the following URL is available: http://soap.xstandard.com/imagelibrary.aspx

Property AttachmentLibraryURL
(Available in XStandard Pro)
Absolute URL to an Attachment Library Web Service. Multiple URLs can be specified, separated by a space character.
For testing purposes, the following URL is available:
http://soap.xstandard.com/attachmentlibrary.aspx

Property LinkLibraryURL
(Available in XStandard Pro)
Absolute URL to a Link Library Web Service. Multiple URLs can be specified, separated by a space character. For testing
purposes, the following URL is available:
http://soap.xstandard.com/linklibrary.aspx

Property SubdocumentURL
(Available in XStandard Pro)
Absolute URL to a Subdocument Web Service. For testing purposes, the following URL is available:
http://soap.xstandard.com/subdocument.aspx

Customization Settings
These settings are used to configure the localization, functionality and look & feel of the editor.

Property Lang
A two-letter language code (should be lowercase) that is used for localization. XStandard ships with 19 localizations
- en (English), de (German), fr (French), nl (Dutch), es (Spanish), it (Italian), cn(Simplified

Chinese), id (Indonesian), jw (Javanese), el (Greek), ru (Russian), uk (Ukrainian), he(Hebrew), sr (Serbian), sh (S

erbo-Croatian), cs (Czech), da (Danish), fi (Finnish) and sv(Swedish). The default value is en. See

the Localization section of this document for how to create your own localizations.

Property Dir
Sets the default text direction for the editor. Possible values are: ltr and rtl.

Property EditorCSS
Absolute URL or file path to a CSS file or CSS data. This file contains CSS rules that are only used by the editor
in WYSIWYG mode. This property is useful for locking and markers. The CSS rules can be set at run-time like this:

XHTMLEditor1.EditorCSS = "h1 {-xs-lock: yes; color:red}";

Property EnablePasteMarkup
(Available in XStandard Pro)
If set to yes (or True), the editor will attempt to retain structural elements (lists, tables, hyperlinks, images, headings,

etc.) when pasting from Microsoft Word or from Web pages. Semantically meaningless markup such as will be

stripped out. The default value is no (or False).

Property EnableTimestamp
(Available in XStandard Pro)
This setting is used to enable or disable the timestamp comment added to markup generated by the editor. The default
value is yes. The timestamp looks like:

<!-- Generated by XStandard version 2.0.0.0 on 2007-06-15T14:16:20.967 -->

http://xstandard.com/en/documentation/xstandard-dev-guide/localization/

Property Localization
Absolute URL or file path to localization.xml file or XML data as a string. If absent, US English localization will be used.

Property PreviewXSLT
Absolute URL or file path to preview.xsl file or XSLT data as a string. If absent, a built-in preview file will be used. This file
is used to render the Browser Preview feature.

Property ScreenReaderXSLT
Absolute URL or file path to screenreader.xsl file or XSLT data as a string. If absent, a built-in screen reader preview file
will be used. This file is used to render the Screen Reader Preview feature.

Property Buttons
(Available in XStandard Pro)
Absolute URL or file path to buttons.xml file or XML data as a string. If absent, a built-in buttons file will be used. This file
is used to change icons and define buttons for the toolbar. The property ToolbarWysiwyg is used to specify which of

the buttons defined in this file will appear on the toolbar.

Property Icons
(Available in XStandard Pro)
Absolute URL or file path to icons.xml file or XML data as a string. If absent, a built-in icons file will be used. This file is
used to change icons used in the editor.

Property Placeholders
(Available in XStandard Pro)
Absolute URL or file path to placeholders.xml file or XML data as a string. If absent, a built-in placeholders file will be

used. This file is used to change the icons used for placeholders (custom tags). See the Placeholders section of this

document for more details.

Property BackgroundColor
This is a Web-named color or a HEX color value for the background of solid areas in the editor, such as the toolbar. For
example: yellow or #ffff00. This feature is not available for Mozilla/Firefox on Windows XP. Note that the background

color used in the actual authoring area of the editor is controlled by CSS.

Property BorderColor
This is a Web-named color or a HEX color value for the editor's border.

Property ToolbarWysiwyg
This parameter customizes the toolbar in WYSIWYG mode. This parameter accepts a comma-delimited list of button IDs.

Buttons IDs are defined in buttons.xml file. A list of default buttons IDs is available in the Interface section of this

documentation. Consecutive commas generate a delimeter (vertical bar) between buttons. For example:

ordered-list, unordered-list, definition-list,, draw-layout-table, draw-data-table,

image, separator, hyperlink, attachment, directory, spellchecker,, wysiwyg, source,

preview, screen-reader, help

To force the toolbar to wrap, use ; at the wrapping point.

Property ToolbarSource
This parameter customizes the toolbar in View Source mode. This parameter accepts a comma-delimited list of button

IDs. Buttons IDs are defined in buttons.xml file. A list of default buttons IDs is available in the Interface section of this

documentation. Consecutive commas generate a delimeter (vertical bar) between buttons. For example:

indent, whitespace, word-wrap, dim-tags, validate,, wysiwyg, source, preview, screen-

reader

Property ToolbarPreview
This parameter customizes the toolbar in Preview mode. This parameter accepts a comma-delimited list of button IDs.

Buttons IDs are defined in buttons.xml file. A list of default buttons IDs is available in the Interface section of this

documentation. Consecutive commas generate a delimeter (vertical bar) between buttons. For example:

wysiwyg, source, preview, screen-reader

Property ToolbarScreenReader
This parameter customizes the toolbar in Screen Reader Preview mode. This parameter accepts a comma-delimited list

of button IDs. Buttons IDs are defined in buttons.xml file. A list of default buttons IDs is available in the Interface section

of this documentation. Consecutive commas generate a delimeter (vertical bar) between buttons. For example:

wysiwyg, source, preview, screen-reader

http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/placeholders/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/

Property ToolbarEffect
This parameter is used to give a decorative effect to the background of the toolbar. Currently on value of "linear-gradient"
is supported.

Property ShowStyles
(Available in XStandard Pro)
This parameter can be used to hide the drop-down Styles Menu found on the toolbar. Possible values are: yes and no .

Property ShowToolbar
(Available in XStandard Pro)
This parameter can be used to hide toolbar buttons. Possible values are: yes and no.

Property ExpandWidth
(Available on Windows)
This parameter sets the width in pixels or as percent of screen width for the editor's expanded window.

Property ExpandHeight
(Available on Windows)
This parameter sets the height in pixels or as percent of screen height for the editor's expanded window.

Property ExpandToolbarWysiwyg
(Available on Windows)
This parameter customizes the toolbar in the editor's expanded window in WYSIWYG mode.
See ToolbarWysiwyg parameter for setting values.

Property ExpandToolbarSource
(Available on Windows)
This parameter customizes the toolbar in the editor's expanded window in View Source mode.
See ToolbarSource parameter for setting values.

Property ExpandToolbarPreview
(Available on Windows)
This parameter customizes the toolbar in the editor's expanded window in Preview mode.
See ToolbarPreview parameter for setting values.

Property ExpandToolbarScreenReader
(Available on Windows)
This parameter customizes the toolbar in the editor's expanded window in Screen Reader Preview mode.
See ToolbarScreenReader parameter for setting values.

Property ExpandShowStyles
(Available in XStandard Pro on Windows)
This parameter can be used to hide the drop-down Styles Menu found on the toolbar in the editor's expanded window.
Possible values are: yes and no.

Property ExpandShowToolbar
(Available in XStandard Pro on Windows)
This parameter can be used to hide toolbar buttons in the editor's expanded window. Possible values are: yes and no .

Property CustomInlineElements
A comma delimited list of custom elements the editor will treat as inline elements. For example: price, stock,

temperature. Custom inline elements are teated like a . Inline elements cannot contain block elements. Inline

elements must be contained within a block element. For example:

<p>Today's temperature is <temperature />.</p>

Property CustomBlockElements
A comma delimited list of custom elements the editor will treat as block elements. For example: include, rss. Custom

block elements are treated like a <div> and therefore cannot be contained by <p>. For example:

<p>Some text</p>

<include doc="123" />

<p>Some more text</p>

Property CustomEmptyElements
A comma delimited list of custom elements the editor will treat as empty elements. For example: include. Empty

elements cannot contain content and are written like this: <include doc="123" />.

Property Rel

A space delimited list of values used to populate the "Relationship" field in the Hyperlink properties dialog box. If this
property contains data, it will display in the simplified interface (when Options 512 is set). Please note, this functionality

will continue to be supported in future releases but the implementation (API) may change.

Property Rev
A space delimited list of values used to populate the "Reverse relationship" field in the Hyperlink properties dialog box. If
this property contains data, it will display in the simplified interface (when Options 512 is set). Please note, this

functionality will continue to be supported in future releases but the implementation (API) may change.

Property Options
Used to enable/disable features in the editor. This value is a bitmask (a sum of values associated with different features).
The following table describes each setting.

Value Description

1 Display hard returns.

2 Automatically fix errors when "dirty" code is loaded into the editor.

4 Hide most items from the context menus (pop-up menus when the right mouse button is clicked).

8 Wrap text in View Source.

16 Hide line numbers in View Source.

32 Disable object resizing by dragging (using image "handles" for example).

64 Treat uploading images as decorative.

128 Do not switch to Images As Text mode during find/replace or spell checking.

256 Convert extra spaces into hard-spaces.

512 Hide advanced editing features (Advanced and Custom tabs as well as certain fields in Properties

dialog boxes).

1024 Use SOAP 1.2

2048 Treat <div> as as structure element. By default, <div> is used as a grouping element.

4096 Disable Directory button when content is selected.

8192 Disable "Fix" option when invalid markup is entered into View Source and user switches

to WYSIWYG view.

16384 Automatically remove undefined custom elements. To define custom elements,

use CustomInlineElements and CustomBlockElements properties.

32768 Paste images as alternate text when file upload is unavailable/disabled.

65536 Strict mode when pasting from applications like Word. Removes attributes

like id, alignand valign.

131072 Display the "Class" field on the General tab of the Properties dialog box in the simplified interface

(when Options 512 is set). The only exception to this is in the Image properties dialog box when

there is a value in ClassImageFloatLeft / ClassImageFloatRightproperties.

262144 Display the "ID" field on the General tab of the Properties dialog box in the simplified interface

(when Options 512 is set).

For example, a value of 24 (8 + 16) would both wrap text and hide line numbers in View Source.

Authoring Techniques Settings
Property ClassImageFloatLeft
A CSS class name used to align images to the left.

Property ClassImageFloatRight
A CSS class name used to align images to the right.

Property ScriptNewWindow
JavaScript used to open a new window. Default value is:

window.open(this.href);return false;

Integration Settings
These settings are useful when integrating the editor into content management solutions.

Property EscapeUnicode
If set to yes (or True), characters outside the ANSI limits will be escaped into a numeric representation. For

example, мир. This feature is useful when you need to work in a truly multilingual environment

but some of the components of your content management system do not yet support Unicode.

Property DocumentID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Document-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_DOCUMENT_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_DOCUMENT_ID"].

Property UserID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-User-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_USER_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_USER_ID"].

Property SessionID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Session-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_SESSION_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_SESSION_ID"].

Property TransactionID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Transaction-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_TRANSACTION_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_TRANSACTION_ID"].

Property ClientID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Client-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_CLIENT_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_CLIENT_ID"].

Property InstanceID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Instance-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_INSTANCE_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_INSTANCE_ID"].

Property TagID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Tag-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_TAG_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_TAG_ID"].

Property ZoneID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Zone-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_ZONE_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_ZONE_ID"].

Property ProjectID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Project-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_PROJECT_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_PROJECT_ID"].

Property AreaID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Area-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_AREA_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_AREA_ID"].

Property GroupID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Group-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_GROUP_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_GROUP_ID"].

Property ParentID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Parent-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_PARENT_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_PARENT_ID"].

Property ContainerID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Container-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_CONTAINER_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_CONTAINER_ID"].

Property ObjectID
Used for integration with CM systems, the value of this property will be transmitted in all HTTP requests made by the
editor in a header named: X-Object-ID. From ASP, read this value

as: Request.ServerVariables("HTTP_X_OBJECT_ID").Item. From PHP, read this value

as: $_SERVER["HTTP_X_OBJECT_ID"].

Property Cookie
This value is used to maintain a cookie-based session state between the editor and Web Services. Web Services have to
be configured to use session state and the value for this property is typically set as follows:

ASP example: <param name="Cookie"

value="<%=Server.HTMLEncode(Request.ServerVariables("HTTP_COOKIE").Item) %>" />

PHP example: <param name="Cookie" value="<?php echo

htmlspecialchars($_SERVER["HTTP_COOKIE"], ENT_COMPAT) ?>" />

Property EnableCache
Caches the editor's customization files when downloaded over a network. See the Caching section in this document for

more information on configuring this feature.

Property HeartbeatURL
(Available in XStandard Pro)

Absolute URL to where "Heartbeat" pulses are sent. See the Heartbeat section of this document for more information on

configuring this feature.

Property HeartbeatInterval
(Available in XStandard Pro)
Number of seconds between Heartbeat pulses. The default value and minimum value is 60.

Property Namespaces
Namespaces declaration. For example:
<param name="Namespaces" value="xmlns:a='http://apple-books' xmlns:b='http://big-books'"

/>

See the Namespaces section of this document for more information on configuring this feature.

Hooks & Extensions Settings

http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/caching/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/heartbeat/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/namespaces/

These settings are used to extend the functionality of the editor through custom code.

Property Mode
(Available in XStandard Pro)
This property can be used to set the default view of the editor, or to programmatically switch between views. Possible
values are: wysiwyg or source or preview or screen-reader. The default value is wysiwyg.

Event ModeChanged(sFrom, sTo)
(Available in XStandard Pro in non-browser applications.)
Fires when Mode changes. To capture this event in Web-based applications, use the following code:

<script type="text/javascript">

//<![CDATA[

function xsModeChanged(id) {

alert('Editor: ' + id + '; function: xsModeChanged()');

}

//]]>

</script>

Event ContentChanged()
(Available in XStandard Pro)
Fires once when content is changed for the first time. To capture this event in Web-based applications, use the following
code:

<script type="text/javascript">

//<![CDATA[

function xsContentChanged(id) {

alert('Editor: ' + id + '; function: xsContentChanged()');

}

//]]>

</script>

Event ButtonClicked(sButton, sState)
(Available in XStandard Pro)
Occurs when a button (of type <button> in buttons.xml file) is pressed. Possible values for sStateare: on or off. To

capture this event in Web-based applications, use the following code:

<script type="text/javascript">

//<![CDATA[

function xsButtonClicked(id, button, state) {

alert('Editor: ' + id + '; function: xsButtonClicked(); button: ' + button);

}

//]]>

</script>

Event ContextMenuActivated()
(Available in XStandard Pro)
Occurs when the context menu is activated. To capture this event in Web-based applications, use the following code:

<script type="text/javascript">

//<![CDATA[

function xsContextMenuActivated(id) {

alert('Editor: ' + id + '; function: xsContextMenuActivated()');

document.getElementById(id).ClearContextMenu();

document.getElementById(id).AddToContextMenu('a', 'My item a', '');

document.getElementById(id).AddToContextMenu('b', 'My item b', '');

document.getElementById(id).AddToContextMenu('c', 'My item c', '');

document.getElementById(id).AddToContextMenu('d', 'My item d', '');

document.getElementById(id).AddToContextMenu('e', 'My item e', '');

}

//]]>

</script>

Event ContextMenuClicked(sMenu)
(Available in XStandard Pro)
Occurs when a custom item in the context menu is clicked. To capture this event in Web-based applications, use the
following code:

<script type="text/javascript">

//<![CDATA[

function xsContextMenuClicked(id, menu) {

alert('Editor: ' + id + '; function: xsContextMenuClicked(); menu: ' + menu);

}

//]]>

</script>

Sub AddToContextMenu(sID As String, sName As String, sGroup As String)
(Available in XStandard Pro)
Add custom item to the context menu.
sID is the ID for the context menu item.

sName is the label for the context menu item.

sGroup is reserved for future use. This argument can be set to empty string.

Sub ClearContextMenu()
(Available in XStandard Pro)
Remove custom items from the context menu.

Sub CallToolbarButton(sID)
(Available in XStandard Pro)
Simulates a toolbar button click.

Sub ApplyStyleID(sID)
(Available in XStandard Pro)
Add or remove a style referenced by an ID. The style can be defined in the drop-down Styles Menu found on the toolbar.

Sub ApplyStyleXML(sStyle)
(Available in XStandard Pro)
Add or remove a style given the XML of the style.

Function CurrentStyles()
(Available in XStandard Pro)
A comma-delimited list of style IDs for the current cursor position. For example: 1,2,3,4,5. This list comes from the

styles defined in the drop-down Styles Menu (not the toolbar). If /style/id is missing from the style's XML definition,

then this style will be omitted.

Property SelectedText
(Available in XStandard Pro)
Text of the current selection. If an empty element is selected (such as) or if nothing at all is selected, an empty

string is returned.

Property SelectedXML
(Available in XStandard Pro)
Markup of the current selection. If nothing is selected, an empty string is returned.

Property TagList
(Available in XStandard Pro)
A comma-delimited list of parent tags (including the current tag) relative to the current cursor position. For
example: body,p,strong

Property Path
(Available in XStandard Pro)
TagList as an XPath expression. For example: /body/p/strong

Property QPath
(Available in XStandard Pro)
TagList as a qualified XPath expression. For example: /body[1]/p[2]/strong[4]

Property TagListXML
(Available in XStandard Pro)
An XML document with a list of parent tags (including the current tag) relative to the current cursor position. For example:

<taglist>

<elt>

<name>body</name>

<index>1</index>

</elt>

<elt>

<name>p</name>

<index>2</index>

<attr>

<name>class</name>

<value>indent</value>

</attr>

</elt>

<elt>

<name>strong</name>

<index>4</index>

</elt>

</taglist>

Event TagListChanged()
(Available in XStandard Pro)
Occurs when the taglist changes for the current cursor position. To capture this event in Web-based applications, use the
following code:

<script type="text/javascript">

//<![CDATA[

function xsTagListChanged(id) {

alert('Editor: ' + id + '; function: xsTagListChanged()');

}

//]]>

</script>

Sub InsertXML(sValue)
(Available in XStandard Pro)
Inserts markup at the current cursor position.

Sub InsertText(sValue)
(Available in XStandard Pro)
Inserts text at the current cursor position.

Sub SetAttribute(sQPath, sName, sValue)
(Available in XStandard Pro)
Inserts or updates an attribute for a given element identified by the qualified XPath expression.

Sub RemoveAttribute(sQPath, sName)
(Available in XStandard Pro)
Deletes an attribute for a given element identified by the qualified XPath expression.

Function Fix(sMarkup)
(Available in XStandard Pro)
This function takes "dirty" / legacy markup and attempts to clean it. Use this function when you need to
clean HTML generated by other WYSIWYG editors, or when returning data from Internet Explorer's innerHTML property.

Event FocusSet()
Occurs when the editor receives focus.

Event FocusLost()
Occurs when the editor loses focus.

Sub CallProperties(sQPath As String)
(Available in XStandard Pro)
Programmatically bring up the Properties dialog box for a given element. For
example: .CallProperties("/body[1]/h2[1]")

Sub ClearCache()
Programmatically removes cached configuration files. This method is used in conjunction

with EnableCache property. It is equivalent to manually selecting Editor > Clear private data from the context

menu.

Function GetAttributes(sQPath As String) As String
(Available in XStandard Pro)
Returns an XML document containing the attributes for a given element. For

example, .GetAttributes("/body[1]/p[1]/a[1]") may return:

<attributes>

<attr>

<name>class</name>

<value>intro</value>

http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/caching/

</attr>

<attr>

<name>href</name>

<value>/news/</value>

</attr>

</attributes>

Sub RemoveAttribute(sQPath As String, sName As String)
(Available in XStandard Pro)
Removes an attribute from a given element.

Sub SetAttribute(sQPath As String, sName As String, sValue As String)
(Available in XStandard Pro)
Adds/updates an attribute for a given element.

Event DialogPropertiesActivated(sQPath As String, sElement As String, sAttributes As String,
sMetadata As String)
(Available in XStandard Pro)
Occurs when the Properties dialog box is requested. This event can be used to replace the editor's Properties dialog box
with your own Properties dialog box. Below is a description of each argument:
sQPath is a qualified XPath expression of the current element being edited. This value can be blank if the element has

not been inserted into markup yet.
sElement is the name of the element being inserted/edited.

sAttributes is an XML document describing the attributes for this element. For example:

<attributes>

<attr>

<name>href</name>

<value>/files/report.doc</value>

</attr>

<attr>

<name>title</name>

<value>Year 2009 Annual Report</value>

</attr>

</attributes>

sMetadata is reserved for future use.

To pass to the editor attributes from your own dialog box and to cancel the editor's dialog box,
call SetDialogProperties() during this event.

To capture this event in Web-based applications, use the following code:

<script type="text/javascript">

//<![CDATA[

function xsDialogPropertiesActivated(id, qpath, element, attributes, metadata) {

alert('Editor: ' + id + '; function: xsDialogPropertiesActivated()');

}

//]]>

</script>

Note, for Web-based applications, do not use floating divs as dialog boxes because they will render behind the editor in
the browser's z-order.

Sub SetDialogProperties(sAttributes As String, bCancelDialog As Boolean, bCancelOperation
As Boolean)
(Available in XStandard Pro)
Passes attribute values to the edtior or the Properties dialog box during DialogPropertiesActivated() event.

Below is a description of each argument:
sAttributes is an XML document describing the attributes for this element. For example:

<attributes>

<attr>

<name>href</name>

<value>/files/report.doc</value>

</attr>

<attr>

<name>title</name>

<value>Year 2009 Annual Report</value>

</attr>

</attributes>

bCancelDialog is a way for your code to disable the editor's Properties dialog box. If the value is True, the editor will

not display the Properties dialog box.
bCancelOperation is a way for your code to cancel modifications to the markup. For example, if the user presses

"Cancel" button in your dialog box, you should set this value to True.

Event Paste(bMarkup, sData)
(Available in XStandard Pro)
This event fires when content is pasted into the editor. bMarkup is a boolean value indicating if the content to be pasted

is plain text or markup. sData contains the content to be pasted. To modify the pasted content before it is inserted into

the editor, call SetPaste() method.

To capture this event in Web-based applications, use the following code:

<script type="text/javascript">

//<![CDATA[

function xsPaste(id, markup, data) {

alert('Editor: ' + id + '; function: xsPaste()');

}

//]]>

</script>

Sub SetPaste(bMarkup As Boolean, sData As String)
(Available in XStandard Pro)
This method modifies the pasted content during the Paste() event.

Network Settings
Property ProxySetting
Specify if a proxy should be used. Possible values are:

auto-detect (default value)

On Windows, the editor will use the connection settings specified for Internet Explorer.
direct

Connect directly to the network. Do not use proxies.
manual

Use the proxy settings specified by the following properties:

• ProxyServer

• ProxyPort

• ProxyUser

• ProxyPassword

platform

On Windows, this setting instructs the editor to use HTTP built into Internet Explorer. With this settting, the editor may be
able to auto-login to your proxy server.

Property ProxyServer
Name or IP address of a proxy server.

Property ProxyPort
Port number of proxy server.

Property ProxyUser
User name used by proxy.

Property ProxyPassword
Password used by proxy.

Miscellaneous Settings
Property Version

(read-only)
The version of the editor currently in use. For example: 3.0.0.0

Property LatestVersion
This optional value is the latest available version of the editor. If this value is greater than the version of the editor
installed, a message box informs the user that a newer version of the product is available. For example: 3.0.0.0

Property IndentOutput
If set to yes (or True), the output of the code will be indented. The default value is no (or False).

Property Debug
If set to yes (or True), to debug HTTP related issue. HTTP calls will be logged and can be seen on the Debug tab of the

About dialog box. To open the About dialog box, from the context menu select "Editor > About". To avoid uncessary writes
to the log file, generally keep this value set to no (False).

Property Data
Same as the Value property. Use this property in Microsoft Access or other development environments where
the Value property is not available.

Web Integration
• Step 1

• Step 2

• Step 3

• Step 4

• Step 5

• Examples

• Integration FAQs

Step 1 - Adding XStandard To The Web Interface
XStandard runs in a Web browser as a plug-in. Plug-ins are added to Web pages using the <object> tag. An example

of the <object> tag is below:

<object type="application/x-xstandard" id="editor1" width="100%" height="400">

<param name="Value" value="Hello World!" />

</object>

The type attribute contains a name that instructs the browser to load XStandard. The id attribute contains the ID that

you assign to this instance of the editor. If you have multiple editors on the page, you must give each of them a unique ID.
The width and height attributes define the dimensions of the editor.

The editor is configured through <param> tags which are inside the <object> tag. In the above example, the

text Hello World! will be loaded into the editor. For a complete list of <param> tags, see API Reference.

Step 2 - Getting Data From XStandard
Unlike form elements, plug-in controls don't send data back to the server. To get around this, Web developers use a
common technique that is reliable and easy to implement. Before the page is submitted, copy the data from the editor into
a hidden field using JavaScript. When the form is submitted, the server-side script (ASP, PHP, ColdFusion, etc.) will read
the data from the hidden field.

This is an example of JavaScript copying data from XStandard into a hidden field:

<html>

<head>

<script type="text/javascript">

function myOnSubmitEventHandler() {

document.getElementById('editor1').EscapeUnicode = true;

document.getElementById('xhtml1').value = document.getElementById('editor1').value;

}

</script>

</head>

http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step1/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step2/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step3/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step4/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/step5/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/examples/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/faqs/
http://xstandard.com/en/documentation/xstandard-dev-guide/api/

<body>

<form method="post" onsubmit="myOnSubmitEventHandler()" action="mypage.htm">

<p>

<object type="application/x-xstandard" id="editor1" width="100%" height="400">

<param name="Value" value="Hello World!" />

</object>

</p>

<p>

<input type="hidden" name="xhtml1" id="xhtml1" value="" />

<input type="submit" name="btnAction" value="Submit" />

</p>

</form>

</body>

</html>

This is an example of a server-side script (in this case an ASP example) reading data from the hidden field:

<%

strXHTML = Request.Form("xhtml1").Item

%>

Step 3 - Loading Data Into XStandard
Your content management system will probably store content in a database. In order to load this content into XStandard,
your server-side script (ASP, PHP, ColdFusion, etc.) will read content from the database and put it into the <param> tag

called "Value". This is an ASP example:

<object type="application/x-xstandard" id="editor1" width="100%" height="400">

<param name="Value" value="<%=Server.HTMLEncode(strXHTML)%>" />

</object>

In this example, the variable strXHTML contains the content from the database. Note, the content needs to be HTML
escaped before it is loaded into the <param> tag. In ASP, this is done using the Server.HTMLEncode() function.

See Examples for how to do this in ASP.NET, PHP, ColdFusion and JavaServer Pages.

Step 4 - Referencing Configuration Files
Styles And CSS
The <param> with the name "Styles" points to the location of the XML document that contains the styles.

The <param> with the name "CSS" points to the location of a CSS document. Use an absolute URL when pointing to

these files. For example:

<param name="Styles" value="http://myserver/styles.xml" />

<param name="CSS" value="http://myserver/format.css" />

License
A license file transforms XStandard Lite into Pro version. The <param> with the name "License" points to the location of

the license file. Use an absolute URL when pointing to the license file. For example:

<param name="License" value="http://myserver/license.txt" />

Step 5 - Uploading Images And Attachments To Libraries
Image and attachment libraries are folders on the Web server that contain files that are available to many Web pages.
The screen shot below shows a typical website with both image and attachment libraries. Images are stored in a folder
called "images" and attachments are stored in a folder called "docs".

http://xstandard.com/en/documentation/xstandard-dev-guide/web-integration/examples/

To upload images and attachments to libraries, install the Image Library and Attachment Library Web Services on the

Web server (see Web Services section) and set the following <param> tags to point to the Web Services.

<param name="ImageLibraryURL" value="http://myserver/images/imagelibrary.asp" />

<param name="AttachmentLibraryURL" value="http://myserver/docs/attachmentlibrary.asp "/>

By default, the URLs for uploaded files are going to be absolute (the URLs will have the name of the server). To get
XStandard to generate relative URLs, modify the variable strBaseURL in imagelibrary.asp and attachmentlibrary.asp.

For example:

strBaseURL = "images/"

In order for images with relative URLs to display correctly in the editor, specify the base URL in the
following <param> tag:

<param name="Base" value="http://myserver" />

Free technical support is available to assist you in integrating XStandard into your solutions.

Examples
Below are examples of how to integrate XStandard into different development environments.

http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/
http://xstandard.com/en/contact-us/
http://xstandard.com/57D415C1-A2FC-4F2B-9108-AF2E612C051D/asp.zip
http://xstandard.com/57D415C1-A2FC-4F2B-9108-AF2E612C051D/aspnet.zip
http://xstandard.com/57D415C1-A2FC-4F2B-9108-AF2E612C051D/php.zip

Web Integration FAQs
General FAQs
Can the editor be installed automatically in the browser?
You can have the editor automatically installed in the browser the first time a Web page uses it.

• In IE, this is done via CAB file (see FAQs below).

Can the editor be upgraded automatically in the browser?
• In IE, this can be done via CAB file (see FAQs below).

What is a CAB file?
A cabinet is a single file created to hold a number of compressed files. During installation of a program, the compressed
files in a cabinet are decompressed and copied to an appropriate directory.

How is a CAB file used?
When you are ready to go to production, you will want the editor to automatically install itself on the client machine when a
Web page using the editor is opened for the first time. You can download the digitally signed CAB file for XStandard
version 3.0.0.0 from:

http://xstandard.com/download/XStandard.cab
Put the CAB file on your Web server. Do not reference the CAB file from our Web site because we periodically update
this file and the version number you use may not match the version of the CAB file on our Web site. Then reference it in
the <object> tag like this:

<object type="application/x-xstandard" id="editor1" width="600" height="400"

codebase="http://yourserver/XStandard.cab#Version=3,0,0,0">

Don't forget the version number after the name of the CAB file in the <object> tag. The version number parts are

separated by commas. The URL in the codebase param is case-sensitive, so make sure you

use XStandard.cab instead of xstandard.cab.

As is common in IE, the first time a user opens a Web page using the editor, a security screen pops up asking users if
they trust downloading the editor from Belus Technology. Note that this only happens once and, if you have a code
signing digital certificate, you can sign the CAB files yourself, so that the message instead asks users if they trust software
coming from Your Company, Inc.

http://xstandard.com/download/XStandard.cab
http://xstandard.com/57D415C1-A2FC-4F2B-9108-AF2E612C051D/coldfusion.zip
http://xstandard.com/57D415C1-A2FC-4F2B-9108-AF2E612C051D/jsp.zip

Microsoft IE 7 has a bug with auto-install. See Knowledge Base for a workaround.

App Integration
• Visual Studio

• Access

• Visual Basic 6

• Visual C++ 6

• Delphi 7

• Visual FoxPro 9

Visual Studio .NET

http://xstandard.com/en/support/ie-7-auto-install-workaround/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vs-net/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/access2000/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vb6/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vc6/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/delphi7/
http://xstandard.com/en/documentation/xstandard-dev-guide/app-integration/vfp9/

1. Start Visual Studio .NET and create a "Windows Application" as shown in the screen shot below.

2. Open the "Toolbox" and right-click over the "General" selector. Select Choose Items... as show in the screen

shot below.

3. In the "Choose Toolbox Items" dialog box, select "COM Components" tab and check off "XStandard" at the bottom
of the list as shown in the screen shot below.

4. XStandard will be added to the "Toolbox". Select it and add it to a form as shown in the screen shot below.

5. Set the properties for the editor via the properties dialog box as shown in the screen shot below.

Tips
Managing configuration files
You can store the XML file for the Styles drop-down list, CSS, XML file for the toolbar buttons and the license file as an
Embedded Resource. You can then programmatically reference these files. For example, drag the license.txt file into your
project. Click on the license.txt file in the Solution Explorer and in the Properties windows, set the Build Action to
Embedded Resource as shown in the screen shot below.

The text of the license file can then be passed to the editor's License property like this:

System.IO.Stream s;

byte[] b;

System.Text.StringBuilder code = new System.Text.StringBuilder();

s =

System.Reflection.Assembly.GetExecutingAssembly().GetManifestResourceStream("WindowsFormsApp

lication1.license.txt");

b = new byte[System.Convert.ToInt32(s.Length)];

s.Read(b, 0, System.Convert.ToInt32(s.Length));

axXHTMLEditor1.License = System.Text.ASCIIEncoding.ASCII.GetString(b);

Using XStandard on 64-bit OS
XStandard is a 32-bit component so you will need to compile your .NET WebForms application to x86 platform. From the
Build menu, select "Configuration Manager...". In the "Active solution platform" field, select x86. If this value is not present,
select <New...> and in the "New Solutions Platform" pop-up, select x86 in the drop-down list as shown in the screen shot
below.

Access 2000
1. Start Access and create a blank database.

2. Select "Forms" from the "Objects" list and double click on "Create form in Design view" as show in the screenshot
below. This will create a new form.

3. From the menu bar, select Insert > ActiveX Control... which will bring up a list of ActiveX components

registered on your computer as shown in the screenshot below.

Scroll to the bottom of the list, select "XStandard" and press the OK button. The XStandard control will be added to

the form.

4. Stretch the editor to desired size. To configure the editor, select it by clicking on it and a list of available properties
will be displayed in the "Properties" window as shown in the screenshot below.

5. To bind a database field to the editor, click on the "Data" tab in the "Properties" window and specify the database

field in the "Control Source" property as shown in the screenshot below.

Tips
When you need to programmatically get or set the value (XHTML) in the editor, use the Data property instead of

the Value property.

Access does not pass the BACKSPACE key to the editor. Use the following workaround:

1. Set the form's "Key Preview" property to "Yes".

2. Include the following KeyDown event subroutine in the form's code module:

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)

If KeyCode = vbKeyBack And Shift = 0 Then

KeyCode = 0

SendKeys "+{BS}"

End If

End Sub

Pressing Undo button in Access may clear the contents of the editor. Use the following code to let users control the undo
opperation:

Private Sub Form_Undo(Cancel As Integer)

If MsgBox("This operation my clear contents in the editor. Do you want to cancel the

Undo?",vbYesNo) = vbYes Then

Cancel = True

Else

Cancel = False

End If

End Sub

Visual Basic 6
1. Start Visual Basic and create a new EXE project.

2. From the menu bar, select Project > Components... This will bring up a list of components registered on

your computer as shown in the screen shot below.

Scroll to the bottom of the list, select "XStandard XHTML Editor" and press the OK button. The XStandard control

will now be visible on the Toolbox.

3. Select the XStandard control from the Toolbox and place it on a form. Use the "Properties Window" to configure the
editor as shown in the screenshot below.

Tips
Put data into the editor via the .Value property. For example:

XHTMLEditor1.Value = "<p>Hello World</p>"

Use the .Value property to get the data from the editor. For example:

MsgBox XHTMLEditor1.Value

You can store the XML file for the Styles drop-down list, CSS, XML file for the toolbar buttons and the license file in "VB
Resources". You can then programmatically reference these files. For example:

XHTMLEditor1.Styles = StrConv(LoadResData(101, "CUSTOM"), vbUnicode)

Visual C++ 6
1. Start Visual C++ and create a new MFC project.

2. Right click over a dialog box where you would like to insert the editor and select Insert Activex

Control...as show in the screen shot below.

3. In the "Insert ActiveX Control" dialog box, select "XStandard" towards the bottom of the list as show in the screen

show below.

4. The editor will be inserted into the dialog box as show i the screen shot below.

5. To edit the editor's properties, right click over the editor and select Properties. "XStandard Properties" dialog

box will display as shown in the screen shot below.

Note
XStandard can also be created dynamically at run-time. See code below as an example:

Crect rect;

rect.left = 20;

rect.right = 500;

rect.top = 60;

rect.bottom = 300;

static CLSID const clsid = { 0x0EED7206, 0x1661, 0x11d7, { 0x84, 0xa3, 0x0, 0x60, 0x67,

0x44, 0x83, 0x1d } };

//this is definition of m_Editor:

//CWnd *m_Editor;

m_Editor = new CWnd;

m_Editor->CreateControl(clsid, "xxx",WS_CHILD | WS_VISIBLE,rect,this,12346);

m_Editor->ModifyStyle(0, WS_CLIPSIBLINGS, 0);

m_Editor->ShowWindow(SW_SHOW);

//set property here.

//set XStandard's "Value" property, its dispid is 1.

m_Editor->SetProperty(1,VT_BSTR, "<h1>Hello World!</h1>");

Delphi 7
1. Start Borland Delphi and create a new Form.

2. This step only needs to be performed the first time using XStandard from Delphi, and may be skipped in the future.
From the menu bar, select Component > Import ActiveX Control... This will bring up a list of

components registered on your computer as shown in the screenshot below.

Scroll to the bottom of the list, select "XStandard XHTML Editor" and press the Install... button, then Create

Unit button.

3. Select the ActiveX tab in the toolbar, click on the XStandard icons and then place it on the Form. Use the "Object
Inspector" to configure the editor as shown in the screenshot below.

Visual FoxPro 9
1. Start Visual FoxPro and create a new project.

2. In "Project Manager" window, select that "Documents" tag, select "Forms" and click on the New... button in order

to create a new form.

3. In the "Form Controls Toolbar" select the OLE button as shown in the screenshot below.

4. With the "OLE" button selected, click on the form to bring up "Insert Object" dialog box show in the screenshot

below. Scroll to the bottom of the list, select "XStandard" and press the OK button.

5. Stretch the editor to desired size. To configure the editor, select it by clicking on it and a list of available properties
will be displayed in the "Properties" window as shown in the screenshot below.

Accessibility
• Making content containing images accessible

o The function of alternate text
o Images As Text makes authoring alternate text simple
o Images As Text makes editing alternate text equally simple
o Images As Text exposes alternate text to find/replace and spell checking
o Benefits of Images As Text
o Decorative versus non-decorative images

• Removing the "noise" from markup

• Encouraging correct use of markup

• Supporting relative units of length

• Distinguishing between data and layout tables

• Supporting abbreviations

• Exposing content to a Screen Reader Preview

• Keyboard-accessible interface

• Keyboard shortcuts

• Complying with accessibility guidelines

Making content containing images accessible
The function of alternate text
The function of alternate text is to make content that contains images understandable when images cannot be seen,
either by users with limited vision, by search engines, or when users turn off image rendering in their browser. To fulfill its
function therefore, alternate text must take into consideration text surrounding images, so that the alternate text works
with surrounding content when the images cannot be seen. This is difficult to do in a pop-up dialog box interface such as
the following one, which does not display any adjacent content at all:

http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-images
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#X-201011151248262
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#X-201011151248133
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#X-201011151248494
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#X-201011151249115
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#X-201011151249266
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#X-201011151249437
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-noise
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-correct-use
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-relative-units
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-tables
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-abbreviations
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#markup-screen-reader-preview
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#interface-keyboard
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#interface-shortcuts
http://xstandard.com/en/documentation/xstandard-dev-guide/accessibility/#compliance-section508

"Images As Text" makes authoring alternate text simple
XStandard's "Images As Text" feature lets authors create and edit alternate text directly in the document. By displaying
alternate text within surrounding content, it becomes clear what the function of alternate text is, and what alternate text will
work in a given context.

A foolproof method of authoring alternate text using "Images As Text" is shown in the following screen shot. The author

highlights text in the document, then selects "Replace text with image" from the context menu, or by pressing on the
toolbar.

The author then selects an image, which replaces the highlighted text in the document. The highlighted text now becomes
the alternate text for the image:

When the document is read as text only, alternate text authored in this way is sure to read perfectly within the surrounding
content.

Images As Text makes editing alternate text equally simple
Images As Text allows alternate text to be edited right in the document. In the following screen shot, the author selects

"Show images as text" from the context menu or presses on the toolbar. This reveals the current alternate text
between image markers, where it can be edited directly in the document, just like surrounding content.

Images As Text exposes alternate text to find/replace and spell checking
When performing editing operations such as find/replace or spell checking, the editor automatically switches to Images As
Text mode. This includes alternate text in find/replace and spell checking operations.

Benefits of Images As Text
• The Images As Text feature significantly reduces the skill required to author appropriate alternate text. Composing

and editing alternate text directly in the document, rather than in a pop-up dialog box, is easy and produces better
results. It makes it clear what alternate text will work and what won't.

• Some authors struggle to understand what alternate text is. This method of authoring alternate text "in-context"
makes it immediately evident to authors what the function of alternate text is: to replace images with text that reads
coherently within the content surrounding images.

• Content authors now experience and appreciate alternate text as a living part of the document, not as remote,
abstracted background information that is only vaguely related to an image.

• Alternate text now fits perfectly into the flow of the document, ensuring the document makes sense when read as
text only, or with images.

• Alternate text is for the first time exposed to processing by popular editing features such as find/replace and spell
checking, which improves still further the quality of alternate text.

Decorative versus non-decorative images
There are two types of images: decorative and non-decorative (also known as informative images). Incorrect use of one or
the other can lead to distortions in the meaning of content. Informative images are meaningful to users and so require

alternate text. By contrast, decorative images (such as spacers, bullets, borders, etc.) are merely "eye-candy", convey no
semantic meaning at all, and should not therefore use alternate text. To make decorative images invisible to non-visual
devices, the setting should be alt="".

The example below shows alternate text used incorrectly for decorative images. Listen to the sound file to hear the
confusion this creates when the markup is processed by an auditory user-agent such as a screen reader:

<p>

Ingredients for black bean soup:

Vegetable broth

Black beans

Crushed tomatoes

</p>

Such mistakes become obvious, and are completely avoidable when alternate text is written in the document using the
Images As Text feature. However, it is sometimes necessary to edit alternate text in a pop-up dialog box. To avoid the
mistake of entering alternate text for decorative images when using pop-up dialog boxes, XStandard prompts the author
to identify an image as decorative or non-decorative. If the image is identified as decorative, data is removed from
alternate text and the field is disabled, as seen in the following screen shot:

However, if the image is identified as non-decorative, XStandard requires that alternate text be entered for the image
before it can be uploaded, as in the following screen shot:

http://xstandard.com/C658A3F0-5D64-40FB-A889-63AD725DBA12/alt-bad-markup.mp3

Removing the "noise" from markup
Deprecated tags, badly formed markup and the fusing together of data and formatting can hinder the processing of
content by assistive technologies. XStandard eliminates markup "noise" by generating clean, well-formed XHTML that
complies with Web Content Accessibility Guidelines (WCAG) developed by W3C, and completely separates data from
formatting by permitting formatting only through external or embedded CSS.

For example, headings (<h1> to <h6>) play a critical role in making content accessible, because they help users of

assistive technologies navigate Web pages. Yet most WYSIWYG editors persist in encouraging authors to construct
headings using font selectors and color pickers that generate markup noise like this.

Chapter 1 - Down the Rabbit-

Hole

The screen shot below shows how XStandard retains the semantic significance of the same heading, using to its Styles
menu. The Styles menu contains customizable instructions to generate semantic markup and CSS rules are typically
attached to this semantic markup to provide formatting for the content. Styles can be given intuitive labels to ensure that
authors apply correct and consistent markup:

The result this time is semantic markup free of "noise":

<h2>Chapter 1 - Down the Rabbit-Hole</h2>

Encouraging correct use of markup
Many WYSIWYG editors incorrectly use the <blockquote> tag for indenting. This hinders accessibility because it sends

the wrong message to assistive technologies. <blockquote> should only be used for quotations and indents should be

implemented through CSS. The screen shot below shows how XStandard differentiates between block quotes and indents
and encourages content creators to use the correct markup for the job.

Supporting relative units of length
Most browsers allow users to control the size of text displayed on the Web page, but this feature only works if relative
units of measure are used in creating Web page content in the first place. XStandard supports both the em and % units of

length.

Distinguishing between data and layout tables
Although tables should be used for displaying data (data tables), until CSS has better support for multi-column
organization of content, it is sometimes necessary to use tables for visual layout (layout tables). Data tables and layout
tables use different markup. Using the wrong type of table can make content found in tables meaningless to assistive
technologies. Below is an example of a data table, where the data in the table is clearly intended to be understood in
relation to column headers.

Cups of coffee consumed by each person

Name Cups Type Sugar

Wendy 10 Regular yes

Jim 15 Decaf no

If the markup behind this table does not associate each cell with the appropriate header (as in a data table), the cells will
be processed like <div> tags by non-visual devices. Listen to an auditory user-agent "reading" this table as if it is a

layout table. Now listen to the same table as a data table, using correct markup.
To avoid mistaking table types, XStandard offers authors a clear choice between layout tables and data tables, making
sure the right table is selected for the job:

XStandard also makes it easy to dentify row and column headers, using the Table pop-up menu seen in the screen shot
below:

http://xstandard.com/C658A3F0-5D64-40FB-A889-63AD725DBA12/table-bad-markup.mp3
http://xstandard.com/C658A3F0-5D64-40FB-A889-63AD725DBA12/table-clean-markup.mp3

Supporting abbreviations
Abbreviation tags help auditory devices such as screen readers to correctly pronounce abbreviated words and to render
the expanded version of abbreviations. The expanded version of the word is placed in the titleattribute as shown in

these examples.

<abbr title="World Wide Web Consortium">W3C</abbr>

<abbr title="Manufacturer">Mfr.</abbr>

<abbr title="5 5 5 - 1 2 3 4">555-1234</abbr>

XStandard makes it easy to use abbreviations and acronyms and even prompts authors to enter the "Full Text" for
the title attribute, as shown in the screen shot below.

The use of "Full Text" for abbreviations and acronyms can better convey the meaning of content to users of assistive
technologies, but overuse of "Full Text" can become annoying. As a best practice, XStandard therefore prompts for "Full
Text" only if the "Full Text" for an abbreviation has not been entered elsewhere.

Exposing content to a Screen Reader Preview
The Screen Reader Preview feature, which is activated by pressing on the toolbar, displays content in the linear
manner common to screen readers. This feature helps authors consider accessibility when contributing content and
encourages them to correct commonly made mistakes that can hinder accessibility.

As authors manage content through XStandard's WYSIWYG interface, the editor automatically makes it impossible to
commit errors in coding that hamper accessibility (such as using deprecated tags), or to make errors of omission (such as
forgetting to supply a table Summary). However, if content is entered through "View Source", XStandard catches
accessibility errors through the Screen Reader Preview.

Sample error reports include:

This document contains an tag. It is better to use .

This document contains an <i> tag. It is better to use .

"The alt text for this image is missing."

"The summary text for this table is missing."

The Screen Reader Preview feature is written in XSLT and can be customized or completely replaced by a specialized
version. For instance, XStandard ships with built-in warnings against using ambiguous hyperlink text such as Click

Here, but the XSLT can be customized to modify such expressions or to add new ones.

Keyboard-accessible interface
XStandard is fully keyboard-accessible. This makes it possible to edit even complex constructs such as definition lists.
The screen shot below shows editing of definition lists using the keyboard.

The editor's toolbar is also keyboard-accessible via the context menu, as seen in the screen shot below.

Keyboard shortcuts
Press To

CTRL + A Select all.

CTRL + LEFT ARROW Move cursor to the beginning of the current or previous word.

SHIFT + CTRL + LEFT ARROW Select text by words.

CTRL + RIGHT ARROW Move cursor to the beginning of the next word.

SHIFT + CTRL + RIGHT ARROW Select text by words.

CTRL + UP ARROW Move cursor to the beginning of the current or previous paragraph or table
cell.

CTRL + DOWN ARROW Move cursor to the beginning of the next paragraph of table cell.

HOME Move cursor to the beginnng of the line.

CTRL + HOME Move cursor to the top of the document.

END Move cursor to the end of the line.

CTRL + END Move cursor to the bottom of the document.

SHIFT + (mouse click or arrow key

or HOME or END)

Select or extend the selection.

PAGE UP Page up.

PAGE DOWN Page down.

TAB Move focus to previous control on the form. This feature is suppored in most
desktop develpment environments and IE.

Press To

SHIFT + TAB Move focus to next control on the form. This feature is suppored in most
desktop develpment environments and IE.

CTRL + I Apply/remove emphasis markup on selected text.

CTRL + B Apply/remove strong emphasis markup on selected text.

CTRL + K Bring up the hyperlink properties dialog box when text is selected.

 F7 Check spelling.

SHIFT + ENTER Insert line break.

CTRL + Z Undo last action.

SHIFT + F10 Display context menu.

ESC Cancel the current task.

DELETE Delete selected object.

CTRL + X Cut

CTRL + C Copy

CTRL + V Paste

SHIFT + DELETE Cut

CTRL + INSERT Copy

SHIFT + INSERT Paste

Complying with accessibility guidelines
XStandard complies with W3C standards, as well as government guidelines and requirements, including the US Section
508 and Canadian Common Look and Feel (CLF) standards.

Localization
XStandard ships with 22 language interfaces including English, French, German, Spanish, Chinese, Dutch, Italian, Czech,
Russian and Swedish. All 22 interface languages are already enabled in the copy of XStandard that you downloaded.

To change the language of the editor's interface, change the localization code in the "Lang" param tag. For example, to

switch to a German interface use:

<param name="Lang" value="de" />

Modifying Localization Files
Making changes to one of the 22 existing interfaces, or creating an entirely new language version is easy.

To modify an existing interface, download and edit the appropriate localization file from the table at the end of this
document.

If you are creating an entirely new language version, download the English localization file from the same table. This file
has convenient "TODO" place-holders where you will insert the new language version, and "xx" placeholders where you
will insert the new language code.

Once you have made changes to an existing language interface, or once you have created a new language version, put
the new localization XML file on your Web server, and point to it as follows:

<param name="Localization" value="http://myserver/localization.xml" />

The localization XML document can store localization for one or several languages at the same time. Multilingual versions
such as the one seen in the screenshot below, identify each language by an xml:lang attribute, and the <param> tag

named Lang instructs the editor to pick the relevant language version from the localization file.

When a single language version of the localization file is used, xml:lang attributes are not necessary and the value from

the <param> tag named Lang is ignored.

Note: Be sure to save your localization XML file in Unicode (UTF-16 or UTF-8). This will ensure that text in any language
will save correctly. If you are editing the localization file in Notepad, when you select "Save As" from the File menu,
choose "Unicode" or "UTF-8" as the type of "Encoding".

Below is a list of available localization files contributed by developers like you. If you would like to contribute a translation,
please contact us.

Available Localization Files

Download Language Code XStandard Version Built-in Author

English en 3.0 Yes Belus Technology

German de 3.0 Yes Peter Bässler and Sascha Kleinwächter

Dutch nl 3.0 Yes Meint Post

French fr 3.0 Yes Monique Glachant

Simplified Chinese cn 3.0 Yes You Cheng Pu

Indonesian id 3.0 Yes Andronicus Riyono

Javanese jw 3.0 Yes Waskito Adi

Russian ru 3.0 Yes Oleg Butuzov

Ukrainian uk 3.0 Yes Oleg Butuzov

Greek el 3.0 Yes Argiris Bendilas

http://xstandard.com/en/contact-us/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-en.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-de.zip
http://www.mettler-fuchs.ch/
http://www.fellowhome.de/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-nl.zip
http://feedme.mind-it.info/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-fr.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-cn.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-id.zip
http://riyono.com/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-jw.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-ru.zip
http://made.com.ua/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-uk.zip
http://made.com.ua/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-el.zip
http://www.zefxis.gr/

Available Localization Files

Download Language Code XStandard Version Built-in Author

Serbian sr 3.0 Yes Petar Marić

Serbo-Croatian sh 3.0 Yes Petar Marić

Czech cz 3.0 Yes Jiří Bureš, Jindřich Hejlík and Radek Hulán

Slovak sk 3.0 Yes Lubos Magat

Hungarian hu 3.0 Yes Istvan Nagy

Polish pl 3.0 Yes Tomek Lisiewicz

Swedish sv 3.0 Yes Roger Johansson and Lennart Olsson

Finnish fi 3.0 Yes Aki Björklund, Jaana Björklund and Ville Pilvio

Danish da 3.0 Yes Jari Berg Jensen and Kenneth Bjørnsholm

Brazilian Portuguese pt 3.0 Yes Rodrigo Tisatto

Spanish es 3.0 Yes Camilo Rueda López

Italian it 3.0 Yes Roberto Scano

Web Services
Web Services are applications that run on the server. They communicate with other computers, using a dialect
of XML called SOAP (Simple Object Access Protocol). Typically, business users do not interact directly with Web
Services. Instead, they interact with user-friendly programs that themselves communicate with Web Services. XStandard
uses Web Services for uploading files from the local computer to the server, for referencing files located on remote
servers, for communicating with 3rd-party systems (such as your CMS), and for spell checking.

Web Services functionality is only available in XStandard Pro. The following table describes the type of Web Services that
XStandard Pro can communicate with.

Service Description Platform

Image Library &
Attachment Library

This service is used for building an image and attachment library. • ASP/ASP.NET on
Windows

• PHP on Linux /
FreeBSD / Windows

Spell Checker

This service is used for spell checking. Available languages are:
English (US, Canadian, British), Danish, German, Spanish,
French, Italian, Dutch, Norwegian, Portuguese, Swedish

• ASP/ASP.NET on
Windows

• PHP on Linux /
FreeBSD / Windows

Directory

This service is used for communicating with 3rd-party systems
(such as your CMS) and for inserting code snippets in the editor.

• ASP/ASP.NET on
Windows

• PHP on Linux /
FreeBSD / Windows

Subdocument

This service is used for rendering subdocuments in the editor
instead of custom elements.

• ASP/ASP.NET on
Windows

• PHP on Linux /
FreeBSD / Windows

To configure XStandard to use Web Services, modify the following params:

<param name="ImageLibraryURL" value="http://myserver/imagelibrary.asp" />

<param name="AttachmentLibraryURL" value="http://myserver/attachmentlibrary.asp "/>

<param name="SpellCheckerURL" value="http://myserver/spellchecker.asp" />

http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-sr.zip
http://www.petarmaric.com/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-sh.zip
http://www.petarmaric.com/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-cz.zip
http://blog.converter.cz/
http://hulan.cz/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-sk.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-hu.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-pl.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-sv.zip
http://netrelations.se/
http://jemtweb.se/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-fi.zip
http://www.kynamies.fi/
http://www.kynamies.fi/
http://www.retico.com/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-da.zip
http://www.stepwise.dk/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-pt.zip
http://www.rtisatto.com/
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-es.zip
http://xstandard.com/A190D08F-98DF-4238-B465-5E425D8BB150/localization-it.zip
http://robertoscano.info/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/

<param name="DirectoryURL" value="http://myserver/directory.asp" />

<param name="SubdocumentURL" value="http://myserver/subdocument.asp" />

For testing purposes:

• ImageLibrary can be found at: http://soap.xstandard.com/imagelibrary.aspx

• AttachmentLibrary can be found at: http://soap.xstandard.com/attachmentlibrary.aspx

• SpellChecker can be found at: http://soap.xstandard.com/spellchecker.aspx

• Directory can be found at: http://soap.xstandard.com/directory.aspx

• Subdocument can be found at: http://soap.xstandard.com/directory.aspx

Spell Checker
• Overview

• Requirements

• ASP Installation

• ASP.NET Installation

• PHP Installation

• Testing

• Configure XStandard

• Configure Spell Checker Web Service

• Notes

Overview
This service is used for spell checking. Available languages are: English (US, Canadian, British), German, French,
Spanish, Italian, Dutch, Danish, Norwegian, Portuguese and Swedish.

Requirements
• ASP / ASP.NET on Windows

• PHP 4.3.0+ (with pspell module) on Linux / FreeBSD / Windows

ASP Installation
1. Run the setup program called x-web-services-asp.exe Instructions for downloading this program are sent to

you when you request download instructions for XStandard Pro.
2. Set "Read & Execute" file permissions on C:\Program Files\XStandard Web Services to Everyone.

3. Copy spellchecker.asp and spellchecker.config to C:\InetPub\wwwroot (or another path that has

an IIS virtual directory mapping) and set "Read & Write" file permissions on this folder to Everyone.

ASP.NET Installation
• Unzip the file called x-web-services-aspx.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.

• Copy spellchecker.aspx and spellchecker.config to C:\InetPub\wwwroot (or another path that has

an IIS virtual directory mapping) and set "Read & Write" file permissions on this folder to Everyone. Into a sub-
folder, copy the bin, data and dict folders.

PHP Installation
1. Unzip the file called x-web-services-php.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy spellchecker.php and spellchecker.config to a folder on your Web site. Make sure this folder has

the broadest possible permission settings. On Unix-based systems, set permissions to 0777.

Testing
In a Web browser, navigate to the URL where the SpellChecker service is located. For
example: http://localhost/spellchecker.asp

If you don't see Status: Ready in the browser, the Web Service is not correctly installed. The most common cause of

this is incorrectly set file permissions.

Configure XStandard

http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#overview
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#requirements
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#asp-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#aspnet-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#php-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#testing
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#configure-xstandard
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#configure-web-service
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/spellchecker/#notes

To set up XStandard to use the SpellChecker service, modify the following <param> tags:

PropertySpellCheckerURL
(Available in XStandard Pro)
Absolute URL to a Spell Web Service. For testing purposes, the following URL is
available: http://soap.xstandard.com/spellchecker.aspx

For example:

<param name="SpellCheckerURL" value="http://soap.xstandard.com/spellchecker.aspx" />

PropertySpellCheckerLangFilter
(Available in XStandard Pro)
A comma-delimited list of dictionaries that are a sub-set of the dictionaries available for the Spell Web Service. In other
words, if the Web Service supports 10 dictionaries but you want XStandard to use only 2, you would specify the two
dictionaries in this parameter. For example: en-ca, fr The screen shot below shows a selection of dictionaries set

using this property.

PropertySpellCheckerLang
(Available in XStandard Pro)
A language code to indicate a default dictionary language for spell checking. The default dictionary must be defined in
the spellchecker.config file for the SpellChecker Web Service. Example: en-us

Configure SpellChecker Web Service
Spell Checker Config File
The purpose of spellchecker.config is to identify which spelling dictionaries are available. If a dictionary is already installed
on the server and you wish to make it available, then set <available> to yes for each <dictionary> tag. Below is

an example of a spellchecker.config file.

<spellChecker>

<dictionary>

<name xml:lang="en">English (US)</name>

<name xml:lang="da">Engelsk (US)</name>

<name xml:lang="de">Englisch (US)</name>

<name xml:lang="es">Inglés (US)</name>

<name xml:lang="fr">Anglais (US)</name>

<name xml:lang="it">Inglese (US)</name>

<name xml:lang="nl">Engels (US)</name>

<name xml:lang="pt">Inglês (US)</name>

<name xml:lang="sv">Engelsk (US)</name>

<code>en-us</code>

<jargon>w-accents</jargon>

<size>60</size>

<stopCheckWordMin>15</stopCheckWordMin>

<stopCheckPercentErrors>50</stopCheckPercentErrors>

<available>yes</available>

</dictionary>

</spellChecker>

Notes
A Czech version of the PHP SpellChecker Web Service is available. This implementation was kindly contributed by one of
our users and is not yet officially supported.

Image Library & Attachment Library
• Overview

• Requirements

• ASP Installation

• ASP.NET Installation

• PHP Installation

• Testing

• Configure XStandard

• Configure ImageLibrary And Attachment Library Web Services

Overview
• These services can be used for uploading files into a library on the server. The screen shot below shows

XStandard uploading an image using the Image Library service.

http://xstandard.com/download/spellchecker-cz.zip
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#overview
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#requirements
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#asp-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#aspnet-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#php-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#testing
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#configure-xstandard
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/library/#configure-web-service

• These services also enable users to select files from a library on the server. The screen shot below shows
XStandard browsing an image library using Image Library service.

Requirements
• ASP / ASP.NET on Windows

• PHP 4.3.0+ (with zlib module) on Linux / FreeBSD / Windows

ASP Installation
1. Run the setup program called x-web-services-asp.exe Instructions for downloading this program are sent to

you when you request download instructions for XStandard Pro.
2. Set "Read & Execute" file permissions on C:\Program Files\XStandard Web Services to Everyone.

3. Copy imagelibrary.asp , imagelibrary.config, attachmentlibrary.asp and attachmentlibrary.

config to C:\InetPub\wwwroot (or another path that has an IIS virtual directory mapping) and set "Read &

Write" file permissions on this folder to Everyone.
4. Set "Read & Write" file permissions on C:\Temp to Everyone. This path can be changed in imagelibrary.asp and

attachmentlibrary.asp files.

ASP.NET Installation
1. Unzip the file called x-web-services-aspx.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy imagelibrary.asp , imagelibrary.config, attachmentlibrary.asp and attachmentlibrary.

config to C:\InetPub\wwwroot (or another path that has an IIS virtual directory mapping) and set "Read &

Write" file permissions on this folder to Everyone. Into a sub-folder, copy the bin folder.

3. Set "Read & Write" file permissions on C:\Temp to Everyone. This path can be changed in imagelibrary.aspx and

attachmentlibrary.aspx files.

PHP Installation
1. Unzip the file called x-web-services-php.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy imagelibrary.php , imagelibrary.config, attachmentlibrary.php and attachmentlibrary.

config to a folder on your Web site. Create a sub-folder called temp or modify the PHP script to point to an

alternate folder for storing temporary work files. Make sure these folders have the broadest possible permission
settings. On Unix-based systems, set permissions to 0777.

Testing
In a Web browser, navigate to the URL where the ImageLibrary or AttachmentLibrary service is located. For
example: http://localhost/imagelibrary.asp

If you don't see Status: Ready in the browser, the Web Service is not correctly installed. The most common cause of

this is incorrectly set file permissions.

Configure XStandard

To set up XStandard to use the ImageLibrary and AttachmentLibrary services, modify the following <param> tags:

Property ImageLibraryURL
(Available in XStandard Pro)
Absolute URL to an Image Library Web Service. Multiple URLs can be specified, separated by a space character. For
testing purposes, the following URL is available: http://soap.xstandard.com/imagelibrary.aspx

Property AttachmentLibraryURL
(Available in XStandard Pro)
Absolute URL to an Attachment Library Web Service. Multiple URLs can be specified, separated by a space character.
For testing purposes, the following URL is available:
http://soap.xstandard.com/attachmentlibrary.aspx

Property LinkLibraryURL
(Available in XStandard Pro)
Absolute URL to a Link Library Web Service. Multiple URLs can be specified, separated by a space character. For testing
purposes, the following URL is available:
http://soap.xstandard.com/linklibrary.aspx

Configure Image Library And Attachment Library Web Services
Customization
The following are settings in imagelibrary.aspx file. The PHP and ASP versions of this and other services have similar
settings.

• The root folder where uploaded images should be saved.
string libraryFolder = Server.MapPath(".");

• The Base URL created for files. This can be a relative or an absolute URL.
string baseURL = "images/";

Thus, if you upload a file called "file.png" with the above setting, the src for the file will be:

• Path to config file.
string configFile = Server.MapPath("imagelibrary.config");

• Temp folder for storing received packets. Make sure file permissions are set to Read/Write for Everyone on this
folder.
string tempFolder = @"C:\Temp\";

• A list of accepted file extensions.
string acceptedFileTypes = "gif jpeg jpg png bmp";

• Maximum file upload size in bytes.
long maxUploadSize = 512000;

• Provide date the file was last modified. For large libraries, turning this off can improve performance.
bool getDateLastModified = true;

• Provide file size. For large libraries, turning this off can improve performance.
bool getFileSize = true;

• Provide image dimensions. For large libraries, turning this off can improve performance.
bool getImageDimensions = true;

• Enable browsing of the library.
bool libraryBrowseEnabled = true;

• Enable searching of the library. You will need to customize the Search feature to meet your CMS needs.
bool librarySearchEnabled = false;

When the Search feature setting is true, the editor displays a Search tab similar to that seen in the screenshot

below.

• Enable uploading of files to the root folder.

bool libraryUploadToRootContainerEnabled = true;

• Enable uploading of files to sub-folders.
bool libraryUploadToSubContainerEnabled = false;

When the sub-folder setting is true, uploaded files can be saved to sub-folders, as shown in the screenshot

below.

• Enable users to replace existing files with uploaded files.

bool libraryUploadReplaceEnabled = true;

When set to false, the ability to replace existing files with uploaded files is disabled:

Image Library Config File
The purpose of imagelibrary.config is it to provide metadata for the image library. Below is an example of an
imagelibrary.config file. The name of the library is specified in the <name> tag. The <library> tag can contain

multiple <folder> and 

</library>

Attachment Library Config File
The purpose of attachmentlibrary.config is it to provide metadata for the attachment library. Below is an example of an
attachmentlibrary.config file. The name of the library is specified in the <name> tag. The <library> tag can contain

multiple <folder> and <attachment> definitions. Each folder and attachment is indentified by the <path> tag. This is

a relative, physical path to the folder or file from the root of the library. For
example: docs/reports/Q1sales.pdf Note: use / as a path separator and ensure that the path does not start or end

with / . The <label> tag can contain a friendly label for the folder or file. Custom icons can be assigned to each folder or

file via the <icon> tag. This can be the ID of an icon defined in the icons.xml file. A CSS class can be assigned to an

attachment via the <class> tag. The <newWindow> tag can be used to generate markup that will open the hyperlinked

attachment in a new window.

<library>

<name>Attachment Library</name>

<folder>

<path>salesreports</path>

<label>Sales Reports</label>

<icon></icon>

<hidden>no</hidden>

</folder>

<attachment>

<path>file.doc</path>

<label></label>

<newWindow>no</newWindow>

<class></class>

<icon></icon>

<hidden>no</hidden>

</attachment>

</library>

Directory

• Requirements

• ASP Installation

• ASP.NET Installation

• PHP Installation

• Testing

• Configure XStandard

• Configure Directory Web Service

• Customization For ASP Version

• Customization For ASP.NET Version

• Customization For PHP Version
The Directory Web Service creates a gateway through which XStandard is able to browse third-party data stores, then
insert the data into the editor at the current cursor position.

Requirements
• ASP / ASP.NET on Windows

• PHP 4.3.0+ on Linux / FreeBSD / Windows

ASP Installation
1. Run the setup program called x-web-services-asp.exe Instructions for downloading this program are sent to

you when you request download instructions for XStandard Pro.
2. Set "Read & Execute" file permissions on C:\Program Files\XStandard Web Services to Everyone.

3. Copy directory.asp, directory.config , directory_example_staff.csv , directory-example-

product-1.txt, directory-example-product-2.txt, directory-example-product-

3.txt, directory-example-product-4.txt, directory-xhtml-entities.xml, directory-xhtml-

latin1.xml, directory-xhtml-special.xml and directory-xhtml-

symbol.xml to C:\InetPub\wwwroot (or another path that has an IIS virtual directory mapping) and set "Read

& Write" file permissions on this folder to Everyone.

ASP.NET Installation
1. Unzip the file called x-web-services-aspx.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy directory.aspx, directory.config , directory_example_staff.csv , directory-example-

product-1.txt, directory-example-product-2.txt, directory-example-product-

3.txt, directory-example-product-4.txt, directory-xhtml-entities.xml, directory-xhtml-

latin1.xml, directory-xhtml-special.xml and directory-xhtml-

symbol.xml to C:\InetPub\wwwroot (or another path that has an IIS virtual directory mapping) and set "Read

& Write" file permissions on this folder to Everyone. Into a sub-folder, copy the bin folder.

PHP Installation
1. Unzip the file called x-web-services-php.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy directory.php, directory.config , directory_example_staff.csv , directory-example-

product-1.txt, directory-example-product-2.txt, directory-example-product-

3.txt, directory-example-product-4.txt, directory-xhtml-entities.xml, directory-xhtml-

latin1.xml, directory-xhtml-special.xml and directory-xhtml-symbol.xml to a folder on your

Web site. Make sure this folder has the broadest possible permission settings. On Unix-based systems, set
permissions to 0777.

Testing
In a Web browser, navigate to the URL where the Directory service is located. For
example: http://localhost/directory.asp

If you don't see Status: Ready in the browser, the Web Service is not correctly installed. The most common cause of

this is incorrectly set file permissions.

Configure XStandard
To set up XStandard to use the Directory service, modify the following <param> tag:

Property DirectoryURL

http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#requirements
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#asp-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#aspnet-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#php-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#testing
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#configure-xstandard
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#configure-web-service
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#customization-asp
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#customization-aspnet
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/directory/#customization-php

(Available in XStandard Pro)
Absolute URL to a Directory Web Service. Multiple URLs can be specified, separated by a space character. For testing
purposes, the following URL is available: http://soap.xstandard.com/directory.aspx

Configure Directory Web Service
Below is a diagram illustrating how XStandard retrieves data from remote data stores using the Directory Web Service.

A user presses the Directory button on the editor's toolbar (Step 1) which brings up a dialog box (Item B). The dialog box
communicates (Step 2) via HTTP with the Directory Web Service (Item C). The Web Service communicates (Step 3) with
data stores (Item D) and retrieves data (Step 4). The Web Service reformats the data and sends it back to the dialog box
(Step 5), populating the list box with the retrieved data. When the user selects an item from the list box, the data is
inserted at the current cursor position (Step 6).

The Directory Web Service can organize data stores in a hierarchy (tree structure), permitting users to browse the data
stores like folders on the file system. In the illustration below, selecting a data store displays a list of code snippets to the
user.

The hierarchy of data stores and the XHTML for each snippet are constructed through a configuration file. Below is a
screenshot of a sample configuration file. The file is an XML file containing a number of scripts written in VBScript or
JavaScript (for the ASP version), in C# or Visual Basic .NET (for the ASP.NET version) or in PHPscript (for
the PHP version). With one exception, each script is identified by a unique ID. The script without an ID is called only when
the user opens the Directory dialog box for the first time. In the screenshot above, this script has created 3 folders and
associated an ID with each folder. When a folder is selected, the script with the corresponding folder ID is called. Thus, in
our example, when the user selects the folder "Staff" the script with the ID "a" is executed. This script retrieves a list of
employees and creates an XHTML snippet for each employee.

Customization For ASP Version
The script engine has a root object called "Directory". This object is global and does not need to be instantiated. It is used
to create folders and code snippets. Below is the API reference for the Directory object.

Sub AddContainer(sName As String, sID As String, [sMetadata As String],
[sLocationAs String], [sIcon As String])
Create a folder. sName is the name of the folder. sID is the ID associated with the folder. sMetadata is additional
data. sLocation is a URL to an alternate Directory Web Service and can be absolute or relative.

Sub AddObject(sName As String, sValue As String, [sIcon As String])
Create a code snippet.

Property CurrentFolder As String
Path to the folder containing the configuration file.

Property ID As String
(read-only)
ID of the script currently being executed.

Property Lang As String
(read-only)
Language code transmitted in the request.

Sub LogToFile(sText As String)
Write message to log file.

Property Metadata As String
(read-only)
Additional data.

Function ReadFromFile(sPath As String) As String
Read contents of a file.

Function URLEncode(sText As String) As String
Escape characters for use in URLs.

Function XHTMLEscape(sText As String) As String
XHTML escape markup. For example, change < to < and & to &

Customization For ASP.NET Version
The script engine has a root object called "XStandard.Directory". This object is global and does not need to be
instantiated. It is used to create folders and code snippets. Below is the API reference for the XStandard.Directory object.

public void AddContainer(string name, string id, string metadata,
string location, string icon)
Create a folder. name is the name of the folder. id is the ID associated with the folder. metadata is additional
data. location is a URL to an alternate Directory Web Service and can be absolute or relative.

public void AddContainer(string name, string id, string metadata,
string location)
Create a folder.

public void AddContainer(string name, string id, string metadata)
Create a folder.

public void AddContainer(string name, string id)
Create a folder.

public void AddObject(string name, string data, string icon)
Create a code snippet.

public void AddObject(string name, string data)
Create a code snippet.

public string CurrentFolder
Path to the folder containing the configuration file.

public string ID
(read-only)
ID of the script currently being executed.

public string Lang
(read-only)
Language code transmitted in the request.

public void LogToFile(string message)
Write message to log file.

public string Metadata
(read-only)
Additional data.

public string ReadFromFile(string path)
Read contents of a file.

public string URLEncode(string text)
Escape characters for use in URLs.

public string XHTMLEscape(string text)
XHTML escape markup. For example, change < to < and & to &

Customization For PHP Version
The script engine can access a class stored in a $directory variable. This variable is already initialized. The object it
contains is used to create folders and code snippets. Below is the API reference for this class.

function add_container($name, $id, $metadata = "", $location = "", $icon = "")
Create a folder. $name is the name of the folder. $id is the ID associated with the folder. $metadata is additional
data. $location is a URL to an alternate Directory Web Service and can be absolute or relative.

function add_object($name, $value, $icon = "")
Create a code snippet.

function current_folder()
Path to the folder containing the configuration file.

var id
(read-only)
ID of the script currently being executed.

function log_to_file($msg)
Write message to log file.

var metadata
(read-only)
Additional data.

function read_from_file($path)
Read contents of a file.

function xhtml_escape($text)
XHTML escape markup. For example, change < to < and & to &

Subdocument
• Overview

• Requirements

• ASP Installation

• ASP.NET Installation

• PHP Installation

http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#overview
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#requirements
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#asp-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#aspnet-installation
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#php-installation

• Testing

• Configure XStandard

• Configure Subdocument Web Service

• Notes

Overview
Subdocuments are chunks of reusable content that authors insert into documents as required. Subdocuments are
essentially custom elements that act as placeholders for content stored outside the document, within the CMS. However,
whereas placeholders appear in the document as icons, in lieu of content, subdocuments display the content itself inside
the document. One example of a reusable subdocument is an author's biography that can be inserted at the end of a
number of articles.

The Subdocument Web Service serves subdocuments to XStandard. XStandard then replaces custom elements with
content from subdocuments and renders them in WYSIWYG mode as read-only content.

Requirements
• ASP / ASP.NET on Windows

• PHP 4.3.0+ on Linux / FreeBSD / Windows

ASP Installation
1. Run the setup program called x-web-services-asp.exe Instructions for downloading this program are sent to

you when you request download instructions for XStandard Pro.
2. Set "Read & Execute" file permissions on C:\Program Files\XStandard Web Services to Everyone.

3. Copy subdocument.asp, subdocument-example-A.txt, subdocument-example-

B.txt, subdocument-example-C.txt, subdocument-example-D.txt, subdocument-example-

E.txt to C:\InetPub\wwwroot (or another path that has an IIS virtual directory mapping) and set "Read &

Write" file permissions on this folder to Everyone.

ASP.NET Installation
1. Unzip the file called x-web-services-aspx.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy subdocument.aspx , subdocument-example-A.txt, subdocument-example-

B.txt, subdocument-example-C.txt, subdocument-example-D.txt, subdocument-example-

http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#testing
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#configure-xstandard
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#configure-web-service
http://xstandard.com/en/documentation/xstandard-dev-guide/web-services/subdocument/#notes

E.txt to C:\InetPub\wwwroot (or another path that has an IIS virtual directory mapping) and set "Read &

Write" file permissions on this folder to Everyone. Into a sub-folder, copy the bin folder.

PHP Installation
1. Unzip the file called x-web-services-php.zip Instructions for downloading this file are sent to you when you

request download instructions for XStandard Pro.
2. Copy subdocument.php, subdocument-example-A.txt, subdocument-example-

B.txt, subdocument-example-C.txt, subdocument-example-D.txt, subdocument-example-

E.txt to a folder on your Web site. Make sure this folder has the broadest possible permission settings. On Unix-

based systems, set permissions to 0777 .

Testing
In a Web browser, navigate to the URL where the Subdocument service is located. For
example: http://localhost/subdocument.asp

If you don't see Status: Ready in the browser, the Web Service is not correctly installed. The most common cause of

this is incorrectly set file permissions.

Configure XStandard
To set up XStandard to use the Directory service, modify the following <param> tag:

Property SubdocumentURL
(Available in XStandard Pro)
Absolute URL to a Subdocument Web Service. For testing purposes, the following URL is available:
http://soap.xstandard.com/subdocument.aspx

Configure Subdocument Web Service
In subdocument.asp, subdocument.aspx or subdocument.php, search for "ADD CUSTOM CODE HERE". The following is
an example from subdocument.aspx:

if(soap.Action == "doSubdocumentDescribe")

{

/*

** ---

** ADD CUSTOM CODE HERE

** ---

*/

soap.AddSubdocumentDefinition("include", "doc");

}

The AddSubdocumentDefinition() function is used to define custom elements that will act as subdocuments. The

first argument is the custom element name. The second argument is the attribute that will contain the ID of the
subdocument. Based on the previous example, the following custom element will act as a subdocument:

<include doc="A" />

The following code is used to replace custom elements with content:

else if(soap.Action == "doSubdocumentDownload")

{

string id = soap.GetProperty("id"); //id

/*

** ---

** ADD CUSTOM CODE HERE

** ---

*/

if (id == "A") {

soap.SetSubdocument(soap.ReadFromFile(Server.MapPath("subdocument-example-A.txt")));

}

}

The if statement is used to check the subdocument ID and then the SetSubdocument() function is used to set the

subdocument content from the given subdocument. In the example above, content for the subdocument is read from a
file. You can customize this code to read from your CMS.

Notes

If subdocument content contains block elements
(<p>, <table>, , , <dl>, <blockquote>, <h1> to <h6> and <address>), then the custom element that

is used for the subdocument should be defined as a block element. This is done via the following <param> tag:

<param name="CustomBlockElements" value="include" />

Toolbar Customization
• Styles

• Buttons

Styles
Styles are instructions for generating markup (code). Styles are not CSS rules. CSS is often applied to the markup to

create formatting. For example, a style called Underline may create markup that looks like this:

Hello World

If there is a CSS rule span.underline {text-decoration:underline}, then the words Hello Wordwould be

underlined.
The Styles seen in XStandard's drop-down menu (below) are generated by an XML document. The XMLdocument has a
simple structure and can be composed in Notepad. An example of this document can be found at "C:\Program
Files\XStandard\styles.xml" on Windows, in "/Applications/XStandard/styles.xml" on OS X or download styles.xml.

In order for the editor to load your styles.xml file, put styles.xml on your Web site and point the editor to this file via an
absolute URL like this:

<param name="Styles" value="http://localhost/styles.xml" />

If no custom styles.xml file is specified, XStandard will use built-in styles such

as Bold, Italic, Superscript, Subscript, Heading, Sub-

heading, Abbreviation, Computer Code , etc.

The Styles drop-down list can be hidden from view using the following tag:

<param name="ShowStyles" value="no" />

The following XML code is an example of styles.xml file:

<styles>

<style>

<label>Bold</label>

<elt>strong</elt>

</style>

<style>

<label>Italic</label>

<elt>em</elt>

</style>

http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/styles/
http://xstandard.com/en/documentation/xstandard-dev-guide/toolbar/buttons/
http://xstandard.com/download/styles.zip

<style>

<label>Underline</label>

<elt>span</elt>

<attr>

<name>class</name>

<value>underline</value>

</attr>

</style>

<style>

<label>Highlight Text</label>

<elt>span</elt>

<attr>

<name>class</name>

<value>highlight</value>

</attr>

</style>

</styles>

Styles can be grouped for ease of use, as seen in the examples below. Translations for styles can be stored in the same
XML document, using the "xml:lang" attribute. The <param> named "Lang" will determine which translation to use.

It is a good idea to get into the habit of storing XML documents in Unicode. In Notepad, select File > Save As, then

select Unicode from the Encoding drop-down box.

The styles.xml file used to generate the bilingual example above might look like this:

<styles>

<group>

<label xml:lang="en">General</label>

<label xml:lang="fr">Général</label>

<style>

<label xml:lang="en">Bold</label>

<label xml:lang="fr">Caractère gras</label>

<elt>strong</elt>

</style>

<style>

<label xml:lang="en">Italic</label>

<label xml:lang="fr">Italique</label>

<elt>em</elt>

</style>

<style>

<label xml:lang="en">Underline</label>

<label xml:lang="fr">En souligné</label>

<elt>span</elt>

<attr>

<name>class</name>

<value>underline</value>

</attr>

</style>

<style>

<label xml:lang="en">Highlight Text</label>

<label xml:lang="fr">En surbrillance</label>

<elt>span</elt>

<attr>

<name>class</name>

<value>highlight</value>

</attr>

</style>

</group>

<group>

<label xml:lang="en">Book</label>

<label xml:lang="fr">Livre</label>

<style>

<label xml:lang="en">Chapter Title</label>

<label xml:lang="fr">Titre du chapitre</label>

<elt>h1</elt>

</style>

<style>

<label xml:lang="en">Character</label>

<label xml:lang="fr">Personnage</label>

<elt>character</elt>

</style>

<style>

<label xml:lang="en">Quote</label>

<label xml:lang="fr">Citation</label>

<elt>q</elt>

</style>

<style>

<label xml:lang="en">Footnote</label>

<label xml:lang="fr">Note en bas de page</label>

<elt>div</elt>

<attr>

<name>class</name>

<value>footnote</value>

</attr>

</style>

</group>

</styles>

This table explains each element in the styles.xml document.

Element Usage

 <styles> The root element that identifies this XML document as a Styles XML document. It must contain at least
one <style> or <group> element.

 <group> Used to group styles together. This element must contain a <name> element and at least

one <style> element. The <name> element can have an xml:lang attribute.

 <style> Used to define a style. This element must contain a <name>, <elt> and zero or more <attr>elements.

The <name> element can have an xml:lang attribute. An optional <id> child element can assign a

unique ID to this style.

 <label> Defines a group name or a style name.

 <id> Used to define a unique ID for a style. This ID is used in API such
as ApplyStyleID() and CurrentStyles().

 <elt> This is the name of the XHTML tag to be created by the style. It must conform to XML naming rules (no

spaces in the name and cannot start with a number), for example: h1 or strong.

 <attr> Used to define an attribute. It must contain one <name> element and one <value> element. The

child <name> element cannot have an xml:lang attribute.

 <name> Defines an attribute name.

Element Usage

 <value> Value of an attribute. This could be text or a function
like: id(), now(), date() , time(), day(), month(), year(), week(), day-of-

year(), weekday(), guid(), random().

You can use styles to create any element with any number of attributes. See Best Practices to get the most out of the
Styles feature.

Buttons
XStandard's toolbar is totally customizable. You can show/hide buttons from a list of predefined buttons or you can

define your own buttons and even change their icons. The screen shot below shows XStandard toolbar with different
grouping of icons.

The screen shot below shows custom icons in place of XStandard default icons.

Buttons on the toolbar can be used for multiple-purposes. Besides executing a predefined command such as bringing up
a table or image dialog box, buttons can apply styles (similar to the styles found in the Styles drop-down list), insert code
snippets or just generate an event that the parent application can hook into.

The buttons are defined in an XML document. An example of this document can be found at "C:\Program

Files\XStandard\buttons.xml" on Windows, in "/Applications/XStandard/buttons.xml" on OS X or download
buttons.xml. If no custom buttons XML file is specified, XStandard will use built-in buttons. The list of buttons to display

on the toolbar, from the list of buttons defined in the XML document, is set through the following property:

<param name="ToolbarWysiwyg" value="ordered-list, unordered-list, definition-list,, draw-

layout-table, draw-data-table, image, separator, hyperlink, attachment, directory,

spellchecker,, wysiwyg, source, preview, screen-reader, help" />

The XML for button definition looks like this:

http://xstandard.com/en/documentation/xstandard-dev-guide/best-practices/
http://xstandard.com/en/documentation/xstandard-dev-guide/interface/
http://xstandard.com/download/buttons.zip
http://xstandard.com/download/buttons.zip

The following tables explain each element in the buttons XML document.

 XML Structure For A Button That Executes A Predefined Command

Element Usage

 <buttons> The root element that identifies this XML document as a buttons XML document.

 <cmd> Used to define a command button. This element must contain an <id>, <name> and <icon>.

The <name> element can have an xml:lang attribute.

 <id> ID of the button.

 <name> Tooltip for the button.

 <icon> ID of an icon defined in icons.xml.

 XML Structure For A Generic Button

Element Usage

 <buttons> The root element that identifies this XML document as a buttons XML document.

 <button> Used to define a generic button. This element must contain an <id>, <name>, <toggle> and <icon>.

The <name> element can have an xml:lang attribute.

 XML Structure For A Generic Button

Element Usage

 <id> ID of the button.

 <name> Tooltip for the button.

 <icon> ID of an icon defined in icons.xml.

 <toggle> Enables "on/off" switch behavior to the button. When set to yes , the button will remain depressed when

clicked until will be released when clicked again. When set to no, the button will behave like a regular

push button.

 XML Structure For A Button That Applies A Style

Element Usage

 <buttons> The root element that identifies this XML document as a buttons XML document.

 <style> Used to define a style. This element must contain an <id>, <name>, <icon>, <elt> and zero or

more <attr> elements. The <name> element can have an xml:lang attribute.

 <id> ID of the button.

 <name> Tooltip for the button.

 <icon> ID of an icon defined in icons.xml.

 <elt> This is the name of the XHTML tag to be created by the style. It must conform to XML naming rules (no
spaces in the name and cannot start with a number), for example: h1 or strong.

 <attr> Used to define an attribute. It must contain one <name> element and one <value> element. The

child <name> element cannot have an xml:lang attribute.

 <value> Value of an attribute. This could be text or a function
like: id(), now(), date() , time(), day(), month(), year(), week(), day-of-

year(), weekday(), guid(), random()

 XML Structure For A Button That Inserts A Code Snippet

Element Usage

 <buttons> The root element that identifies this XML document as a buttons XML document.

 <snippet> Used to define a button for inserting a code snippet. This element must contain
an <id>, <name>, <value> and <icon> . The <name> element can have an xml:lang attribute.

 <id> ID of the button.

 <name> Tooltip for the button.

 <icon> ID of an icon defined in icons.xml.

 <value> XHTML to insert into the editor. The markup contained in this tag must be escaped (replace <with <,

replace > with >, replace " with " and replace & with &.

 XML Structure For A Button That Opens A Browser Window

Element Usage

 <buttons> The root element that identifies this XML document as a buttons XML document.

 <window> Used to define a button for opening a browser window. This element must contain
an <id>, <name>, <url> and <icon>. The <name> element can have an xml:lang attribute.

 <id> ID of the button.

 <name> Tooltip for the button.

 <icon> ID of an icon defined in icons.xml.

 <url> An absolute URL to open in a new browser window.

icons.xml contains graphics for each icon. These graphics are 16x16 and 24x24 GIF files have have been encoded

into HEX. An online tool is available to encode GIF files into HEX. The current release of XStandard only uses 16x16

graphics for icons so you can omit the 24x24 graphics.

Best Practices
Styles
The Styles selector creates markup (elements and attributes). Some of the markup will reference CSS in order to format
data, but there is no fixed relationship between a style and formatting. In fact, data can easily be reformatted simply by
changing to another CSS. Because of this, it is best to give Styles meaningful names that are related to the contents of
the document, rather than names that describe formatting. So avoid names that have colors or font styles in them like
"Red text" or "Arial 12 pt". Instead, use semantic-rich names like "Product Name", "Product Specs" and "Price".

CSS
CSS documents are made up of formatting rules. Each rule has a selector that is used to bind the rule to specific tags.

Many developers write selectors like this: .classname {property: value}

The dot class name syntax is a shorthand for *.classname {property: value}. This says that this class name can

be applied to any tag. This syntax is perfectly fine if the rule truly can be applied to any tag. If not, it is better to specify the
tag that the rule does apply to. For example: img.right {float: right}

XStandard can then use the selector to show only relevant CSS rules when editing any given tag. For example, the
screenshot below shows the available CSS rules for the tag.

XStandard And Desktop Applications
When using XStandard in a Web environment, store the Styles, CSS, and License files on Web servers. For example:

<param name="Styles" value="http://server/styles.xml" />

When using XStandard in a desktop application, store these documents in resource files in your application project. Then
pass the data from the files directly to the editor's properties. In Visual Basic, this might look like:

XHTMLEditor1.Styles = StrConv(LoadResData(101, "CUSTOM"), vbUnicode)

Advanced Topics
• Caching

• Heartbeat

• Placeholders

• Browser Preview Customization

• Screen Reader Preview Customization

• Namespaces

• Locking

http://xstandard.com/download/icons.zip
http://xstandard.com/en/tools/hex/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/caching/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/heartbeat/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/placeholders/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/preview/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/screenreader/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/namespaces/
http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/locking/

• Markers

Caching
If you have configured the editor to reference external files, when the editor starts up, it downloads these files over the
network. Since they are quite small, downloading a CSS, Styles or License file is no more resource intensive than loading
a typical Web page into a Web browser. However, larger files such as a custom localization file or a custom buttons
definition file can slow down the editor's start-up. To address this issue, files that need to be fetched over the network can
be cached.

To enable caching, set the following param tag:

<param name="EnableCache" value="yes" />

When the editor fetches files referenced by the following param tags, the files are stored in a cache:

• CSS

• EditorCSS

• Styles

• Localization

• ScreenReaderXSLT

• PreviewXSLT

• Buttons

• Icons

• Placeholders

• License

The editor uniquely identifies each file based on a case-sensitive URL to the file. When caching is enabled, at start-up the
editor checks to see if a file with a given URL is already in the cache. If it is, the editor uses the cached version of the file
instead of downloading the file again from the server. The editor automatically ensures that the cache does not exceed
200 files or 5 MB.

Caching does present a challenge however. When you update a file on the server, how do you tell the editor to use the
new file instead of the old file kept in the cache? The easiest and most reliable way to do this is to modify the file's URL.
For example, let's say the buttons.xml file is found at the URL:

http://server1/buttons.xml

When the file is updated, modify the file's URL by appending a version number in a query string. For example:

http://server1/buttons.xml?14

Each time you modify the file, simply increment the version number. For example:

http://server1/buttons.xml?15

To automate the URL updating process, when your scripts are generating the param tags, a date last modified can be
retrieved from the file and appended to the URL. For example:

12/3/2004 9:54:44 PM which when URL encoded looks like:

http://server1/buttons.xml?12%2F3%2F2004+9%3A54%3A44+PM

The editor's cache can be cleared manually by selecting Editor > Clear private data from the context menu.

http://xstandard.com/en/documentation/xstandard-dev-guide/advanced-topics/markers/

Heartbeat
Web-based content management systems log out users (i.e. lose Session state) after a period of inactivity between the
browser and the Web server. Even if a browser is open and a user is authoring content, in Web terms this is considered
inactivity. When Session state is lost, users are forcibly logged out and valuable work is often lost. To avoid this,
XStandard Pro has a feature called "Heartbeat" which can send HTTP pulses to the server at regular intervals. The
continuing stream of pulses tells the Web server that the user is still connected and that Session state should not be lost.
This ensures authors remain logged into the content management system for as long as they need to complete their work.

To enable the heartbeat, create a Web page in the same development environment that your CMS is written in
(ASP, PHP, etc.) and put the Web page in the same folder with the rest of your CMS Web pages. Add a line of code to the
Web page in order to trigger the scripting engine. This can be as simple as writing out the current date. Here is
an ASP example:

<%

Response.Write Now()

%>

Then, in the <object> tag for the editor, add the following <param> tag and point it to the location of the newly created

Web page:

<param name="HeartbeatURL" value="http://myserver/heartbeat.asp" />

To set the length of the pulse interval, use the following <param> tag where the value is measured in seconds:

<param name="HeartbeatInterval" value="300" />

Placeholders
Overview
Placeholders are empty custom tags that reserve space for dynamic content that is inserted when a Web page is
requested. For example, the markup:

Today's temperature is <temperature />.

...gives this result when the placeholder is replaced by the current temperate:

Today's temperature is 23°C.

In the editor's WYSIWYG mode, placeholders display by default as icons. If the placeholder has a titleattribute, its

value will display as a tooltip when the cursor is placed over the icon.

Custom icons such as the one seen below can be assigned or mapped to placeholders via the placeholders.xml file.

The placeholders.xml file is referenced via the "Placeholders" <param> tag. For example:

<param name="Placeholders" value="http://yourserver/placeholders.xml" />

The following is an example of a placeholders.xml file that maps to a custom icon:

<placeholders>

<placeholder>

<elt>temperature</elt>

<icon>thermometer</icon>

</placeholder>

</placeholders>

In the example above, the <placeholders> tag is a root element and contains one or more <placeholder>elements.

The <placeholder> element defines the rules for matching an icon to a custom tag. The <elt>tag contains the name

of the custom tag. The <icon> element contains the ID of an icon defined in the icons.xml file, or it can contain

the HEX value of a GIF file.
You can assign icons to placeholders based on the element name combined with the value of its attributes. For example,

you might want the placeholder to display in the editor when the type attribute value is "happy", and

the placeholder to display when the type attribute value is "sad":

<emoticon type="some value" />

In th example below, use the <attr> elemement within the <placeholder> element to define the attribute to match

on. The <name> element is the name of the attribute and the <value> element contains the value of the attribute. For

example:

<placeholders>

<placeholder>

<elt>emoticon</elt>

<attr>

<name>type</name>

<value>happy</value>

</attr>

<icon>emoticon-happy</icon>

</placeholder>

<placeholder>

<elt>emoticon</elt>

<attr>

<name>type</name>

<value>sad</value>

http://xstandard.com/en/tools/hex/

</attr>

<icon>emoticon-sad</icon>

</placeholder>

</placeholders>

Inserting Placeholders
The easiest way for non-technical uses to insert placeholders is through the Directory service (on the toolbar). The
screenshot belows shows the user browsing the Placeholders folder for appropriate placeholders.

Configuring XStandard To Preview Dynamic Content
The editor's Browser Preview mode is the result of taking content entered into the editor and running it through an XSLT.
A copy of this XSLT file can be found in "C:\Program Files\XStandard\preview.xsl" on Windows and in
"/Applications/XStandard/preview.xsl" on OS X. The editor references this file via the "PreviewXSLT" <param>tag. For

example:

<param name="PreviewXSLT" value="http://myserver/preview.xsl" />

The XSLT can be customized to replace placeholders with dynamically generated content, so that the results can are
seen in Browser Preview mode. For example, say we want to implement a document include capability in the editor. The
following placeholder can be used to identify the document fragment to be included:

<include document="ABC123" />

In order to display the contents of the inlcuded document fragment in Browser Preview mode, we can add the following
rule to the XSLT:

<xsl:template match="include">

<xsl:variable name="url">http://yourserver/document.asp?id=<xsl:value-of

select="@document"/></xsl:variable>

<xsl:apply-templates select="document($url)/*" />

</xsl:template>

This rule states that when the <include> element is encountered, take the value from the document attribute and pass

it in the query string to URL http://yourserver/document.asp?id=xxx. Then display the data returned from this

URL. Note, the data returned must be a valid XHTML (XML) document fragment with a root element. Use a tag

as a root element if the contents are all inline elements. For example:

The stock price of <abbr>IBM</abbr> is $123.15.

Use a <div> tag as a root element if the contents contain a block element. For example:

<div><p>...</p><table>...</table><p>...</p></div>

Since placeholders are treated as inline elements by the editor, a placeholder will likely be inside a <p> tag. Add the

following rule to the XSLT that will convert the <p> tag that contains a placeholder, such as <include>, into

a <div> tag.

<xsl:template match="p[include]">

<div>

<xsl:apply-templates/>

</div>

</xsl:template>

Browser Preview Customization
XStandard is a content editor, therefore content authors use the editor to edit portions of a Web page, not the entire page.
Some authors find it useful however to preview the content they produce within the layout of the actual Web page. You
can add this feature by modifying the XSLT in preview.xsl, in order to customize the Browser Preview mode.

To instruct the Browser Preview feature to use a different CSS file, add the following XSLT rule to preview.xsl:

<xsl:template match="style">

<style type="text/css" media="screen">@import url('http://myserver/format.css');</style>

</xsl:template>

Layout markup can be added to preview.xsl in the following way:

<xsl:template match="body">

<body>

<h1></h1>

<ul id="nav">

Home

Products

Services

News

About Us

<div id="content">

<xsl:apply-templates />

</div>

</body>

</xsl:template>

Content generated through the editor will be inserted into the page layout markup at the location <xsl:apply-

templates />.

To instruct the editor to use the customized Browser Peview file, give the location of the file in the <param> tag

named PreviewXSLT. For example:

<param name="PreviewXSLT" value="http://myserver/preview.xsl" />

Screen Reader Preview Customization
The Screen Reader Preview feature, which can be customized or completely replaced by a specialized version, is written
in XSLT. XSLT is a language for transforming (restructuring) XML documents. Since XHTML is an XMLlanguage,
converting it to another structure is easy using XSLT.

To instruct the editor to use a custom screen reader preview file, give the location of the file in the <param> tag

named ScreenReaderXSLT. For example:

<param name="ScreenReaderXSLT" value="http://myserver/screenreader.xsl" />

Namespaces

Namespaces are a way to distinguish tag names for different XML vocabularies. For example, if bookstore A and
bookstore B use the tag name <book> to identify a book, there can be a conflict when data from both bookstores is used

in the same document.
To avoid the conflict, each bookstore's tags can be grouped into a namespace. Namespaces are unique names, usually
written in the form of a URL, that identify a set of tags. Thus, bookstore A can define a namespace such
as http://apple-books and bookstore B can define a namespace such as http://big-books.

Since namespaces are quite long, repeating the entire namespace for each tag can be quite bulky. Therefore, a short
name called a prefix is associated with each namespace, and the association made in the markup like this:

<p xmlns:a="http://apple-books" xmlns:b="http://big-books"> ... </p>

Alternatively, the association can be specified in the Namespaces <param> tag. For example:

<param name="Namespaces" value="xmlns:a='http://apple-books' xmlns:b='http://big-books'" />

Once namespaces are declared and the association established between a prefix and a namespace, the prefix can be
used to make each <book> tag unique. For example:

<p>

Buy <a:book>Easy XHTML</a:book> from Apple Books

Buy <b:book>Easy XHTML</b:book> from Big Books

</p>

Locking
In WYSIWYG mode, areas of content can be locked (made read-only). Elements can be locked by specifying the
following CSS vendor-specific extension:

Name Values Initial value Applies to Inherited? Percentages Media groups

-xs-lock yes | no | true | false | inherit no all yes n/a all

The following example locks all elements except an element with ID "content":

body {

color: black;

background-color: white;

-xs-lock: yes;

}

#content {

border: 1px dashed red;

-xs-lock: no;

}

The -xs-lock property can be added to a CSS file that is referenced by the following <param> tag:

<param name="CSS" value="http://yourserver/format.css" />

Or it can be added to an editor specific CSS file referenced by the following <param> tag:

<param name="EditorCSS" value="http://yourserver/editor.css" />

Locking properties can also be applied at run-time. Here is a Visual Basic example:

XHTMLEditor1.EditorCSS = "h1 {-xs-lock: yes}"

Markers
In WYSIWYG mode, areas of content can be flagged with markers. Markers are labels that denote the start and end of a
specific element. Markers are created using the following CSS vendor-specific extensions:

Name Values Initial
value

Applies to Inherited? Percentages Media
groups

-xs-marker-
label

element-name |
attr(<identifier>)
| <string>

element-
name

h1, h2, h3, h4, h5, h6, p,
blockquote, table, address, div, ul,
ol, dl, a, abbr, acronym, cite, code,
dfn, em, kbd, samp, strong, var, big,
small, sub, sup, tt, img, object,
label, q, span, [custom elements]

no n/a all

-xs-marker-
color

<color> black h1, h2, h3, h4, h5, h6, p,
blockquote, table, address, div, ul,
ol, dl, a, abbr, acronym, cite, code,
dfn, em, kbd, samp, strong, var, big,
small, sub, sup, tt, img, object,
label, q, span, [custom elements]

no n/a screen

-xs-marker-
background-
color

<color> #ffff99 h1, h2, h3, h4, h5, h6, p,
blockquote, table, address, div, ul,
ol, dl, a, abbr, acronym, cite, code,
dfn, em, kbd, samp, strong, var, big,
small, sub, sup, tt, img, object,
label, q, span, [custom elements]

no n/a screen

-xs-marker-
border-color

<color> black h1, h2, h3, h4, h5, h6, p,
blockquote, table, address, div, ul,
ol, dl, a, abbr, acronym, cite, code,
dfn, em, kbd, samp, strong, var, big,
small, sub, sup, tt, img, object,
label, q, span, [custom elements]

no n/a screen

The following example displays a marker around an element with ID "content":

#content {

-xs-marker-label: "Press release body text";

}

The following example will display a marker around a custom element <price> and use the data in the titleattribute

for a label.

price {

-xs-marker-label: attr(title);

}

The following example displays a red color marker around a locked element:

#footer {

-xs-marker-label: "Read-only: do not edit";

-xs-marker-color: white;

-xs-marker-background-color: red;

-xs-lock: yes;

}

The marker CSS properties can be added to a CSS file that is referenced by the following <param> tag:

<param name="CSS" value="http://yourserver/format.css" />

Or they can be added to an editor specific CSS file referenced by the following <param> tag:

<param name="EditorCSS" value="http://yourserver/editor.css" />

Marker properties can also be applied at run-time. Here is a Visual Basic example:

XHTMLEditor1.EditorCSS = "h1 {-xs-marker-label: 'Heading'}"

Note
By default, content within markers is displayed inside a dashed outline. To remove the dashed outline, set the
CSS border to "none". For example:

#content {

http://www.w3.org/TR/CSS21/syndata.html#value-def-identifier
http://www.w3.org/TR/CSS21/syndata.html#value-def-string
http://www.w3.org/TR/CSS21/syndata.html#value-def-color
http://www.w3.org/TR/CSS21/syndata.html#value-def-color
http://www.w3.org/TR/CSS21/syndata.html#value-def-color

-xs-marker-label: "Press release body text";

border: none;

}

XStandard removes inline elements that have no content. For example, given the following markup:

<p>

Text text text text.

</p>

The element will be removed because it has no content. If there is a marker on the empty element, the

marker will be removed as well. If you require markers on inline content, use custom elements like this:

<p>

Text text <first-name></first-name> text text.

</p>

License File
A license file transforms XStandard Lite into Pro. If you are using XStandard Lite, you do not need any license files. If you
are using a 30-day evaluation version of XStandard Pro, your license file can be found at "C:\Program
Files\XStandard\license.txt" on Windows or "/Applications/XStandard/license.txt" on OS X. The license is good for 30 days
and permits users of the editor to upload files, browse file libraries and spell check content using Web Services located on
the XStandard server or on localhost. If, for evaluation purposes, you require a different URL to locate your Web Services,

please contact us.

Specify the location of a license file in the <param> tag called License . Use an absolute URL like this:

<param name="License" value="http://myserver/license.txt" />

Did You Know?
• FAQs

o Did you know that if you can create line breaks with a keyboard shortcut?
o Did you know that you can put a cursor in front of and behind block elements?
o Did you know that you can use custom tags as placeholders for dynamic content?
o Did you know that the output code from XStandard is an XML fragment?
o Did you know that you can omit mailto: when creating a hyperlink to an email address?
o Did you know that you can create a multi-row toolbar?
o Did you know that you can add image alignment options to the image context pop-up menu?

FAQs
Did you know that if you can create line breaks with a keyboard shortcut?
Press Shift-Enter, you get a
.

Did you know that you can put a cursor in front of and behind block
elements?
Block elements are <div>, <table>, , , <blockquote> and <hr>. See this by pressing the left or right

arrow keys until the cursor displays alongside content, as shown in the screenshot below. This is very useful when you
have 2 <div> or <table> structures next to each other and you need to add text or objects between them.

http://xstandard.com/en/contact-us/
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#faqs
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#line-breaks
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#cursor-block-elements
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#custom-tags-placeholders
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#output-xml
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#omit-mailto
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#multi-row-toolbar
http://xstandard.com/en/documentation/xstandard-dev-guide/did-you-know/#image-float

Did you know that you can use custom tags as placeholders for dynamic
content? Create markup like this:

<p>

Today's temperature is <temperature title="Placeholder for temperature."/>.

</p>

... and when you display the content on a Web page, the custom tag (placeholder) is replaced by dynamic data. The
markup above gives the following result when the placeholder is for the current temperature:

Today's temperature is 23°C.

As seen in the screenshot below, you can make custom tags easier to recognize and apply by assigning them custom
icons and tooltips, using the placeholders.xml file. The text used in the title attribute for the custom tag displays

as a tooltip..

Did you know that the output code from XStandard is an XML fragment?
This means that you can load it into DOM XML parser or process it with XSLT.

Since XStandard is a content editor, the markup it generates is an XML fragment without a root element. So, before you
load this markup into an XML parser, you need to add the root element yourself. Here is a Visual Basic 6 example:

Dim objDoc As MSXML2.DOMDocument40

Set objDoc = New MSXML2.DOMDocument40

objDoc.async = False

objDoc.loadXML "<root>" & XHTMLEditor1.Value & "</root>"

MsgBox objDoc.xml

Set objDoc = Nothing

Here is the same example in C#:

XmlDocument doc = new XmlDocument();

XmlNamespaceManager namespaceManager = new XmlNamespaceManager(doc.NameTable);

doc.LoadXml("<root>" + axXHTMLEditor1.Value + "</root>");

MessageBox.Show(doc.InnerXml.ToString());

Did you know that you can omit mailto: when creating a hyperlink to an email
address?
XStandard automatically inserts mailto: for you.

Did you know that you can create a multi-row toolbar?
Insert a ; between button IDs in the Toolbar param tag. For example:

<param name="ToolbarWysiwyg" value="ordered-list,unordered-list;image,hyperlink" />

Did you know that you can add image alignment options to the image context
pop-up menu?
Create CSS classes for image alignment like this:

img.left {float:left}

img.right {float:right}

Then let the editor know about these CSS classes like this:

<param name="ClassImageFloatLeft" value="left" />

<param name="ClassImageFloatRight" value="right" />

The screenshot belows shows the result:

Changes From Previous Version
API Changes
• ModeChange() event has been renamed to ModeChanged()

• ButtonClick() event has been renamed to ButtonClicked()

• The following API have been removed:

o Proxy

o EnableProxy

o EnableProxyAuthentication

o Toolbar

o Expand

• The following API have been added:

o ProxySetting

o ProxyServer

o ContextMenuActivated()

o ContextMenuClicked()

o ClearContextMenu()

o ToolbarWysiwyg

o ToolbarSource

o ToolbarPreview

o ToolbarScreenReader

o ExpandToolbarWysiwyg

o ExpandToolbarSource

o ExpandToolbarPreview

o ExpandToolbarScreenReader

o ToolbarEffect

Further Reading
• XStandard Upgrade Guide

Copyright
Copyright © 2002-2010 Belus Technology, Inc.

Third-party licenses:

• This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/). Copyright (c) 1998-2005 The OpenSSL Project. This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

• Copyright © 1998-2003 Daniel Veillard

• Copyright © 2002 W3C

• Copyright © 1995-2003 Jean-loup Gailly and Mark Adler

• Copyright © 1998-2003 John Maddock (Boost Software)

• Copyright © 1991-1998 Thomas G. Lane

• Copyright © 2004 Glenn Randers-Pehrson

• Copyright © 2004 Kevin Atkinson

• Copyright © 2001-2005 Mike Krueger

• Copyright © 2004 John Heinstein

• Copyright © 2003 Vincent Blavet

• This product includes features licensed by Vlad Alexander

http://xstandard.com/en/documentation/xstandard-upgrade-guide/
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/libxml.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-w3c.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-zlib.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-boost.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-ijg.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-libpng.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-lgpl.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-ziplib.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-lgpl.txt
http://xstandard.com/1D1B6C13-7BB6-4FA8-A1F9-EC1E32577D26/license-lgpl.txt

